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Abstract

This paper introduces the optimal mixing problem, a natural extension of the

computation of approximate Nash Equilibria (NE) in bimatrix games. The

problem focuses on determining the optimal convex combination of given

strategies that minimizes the approximation (i.e., regret) in NE computa-

tion. We develop algorithms for the exact and approximate optimal mixing

problems and present new complexity results that bridge both practical and

theoretical aspects of NE computation. Practically, our algorithms can be

used to enhance and integrate arbitrary existing constant-approximate NE

algorithms, offering a powerful tool for the design of approximate NE algo-

rithms. Theoretically, these algorithms allow us to explore the implications

of support restrictions on approximate NE and derive the upper-bound sep-

arations between approximate NE and exact NE. Consequently, this work

contributes to theoretical understandings of the computational complexity

of approximate NE under various constraints and practical improvements
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in multi-agent reinforcement learning (MARL) and other fields where NE

computation is involved.

Keywords: Approximate Nash equilibria, Bimatrix games, Optimal mixing,

Approximation algorithms, Computational complexity

1. Introduction

The problem of approximate Nash equilibrium (NE) computation is in-

teresting and fundamental from both theoretical and pragmatic perspectives.

Theoretically, approximate NE builds bridges between several important

complexity classes related to TFNP [1], especially PPAD [2, 3]. Practically,

an approximate NE solver is a core component in multi-agent reinforcement

learning (MARL) [4, 5, 6, 7], which has been successfully applied to train ma-

chine agents that can defeat the top human players in electronic games [8, 9].

To define the approximate NE problem, consider a two-player bimatrix

game with payoff matrices R ∈ [0, 1]m×n and C ∈ [0, 1]m×n. For any strategies

x, y of both players, respectively, we define

f(x, y) = max{fR(x, y), fC(x, y)} ≥ 0

with fR(x, y) = max{Ry} − xTRy and fC(x, y) = max{CTx} − xTCy. In-

tuitively, in the game given by payoff matrices R,C where the two players

select x, y respectively, f(x, y) is a measure of their willingness to unilater-

ally deviate from the current strategy. Following [10, 11], the goal of NE

computation in bimatrix games can be written as:

argmin
x,y

f(x, y) s.t. x ∈ ∆m, y ∈ ∆n. (1)
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In the literature [12], f(x, y) is called the approximation of (x, y). A strategy

profile (x, y) is an NE if f(x, y) = 0 and an ϵ-NE if f(x, y) ≤ ϵ. Since f ≥ 0

and NE always exists [13], the solution of (1) must be an NE.

1.1. The Optimal Mixing Problem

We propose the optimal mixing problem of approximate NE, which is a

natural extension of the approximate NE computation. Given s, t strategies

x1, . . . , xs and y1, . . . , yt of the two players, the (s, t)-optimal mixing problem

is:

argmin
α,β

f(α1x1 + · · ·+ αsxs, β1y1 + · · ·+ βtyt) s.t. α ∈ ∆s, β ∈ ∆t. (2)

Intuitively, the problem seeks the convex combination of x1, . . . , xs and

y1, . . . , yt that has the minimum approximation. We also define the ϵ-optimal

(s, t)-mixing problem by allowing an additive tolerance of ϵ in the objective,

i.e., the output is required to have approximation no more than f ∗+ϵ, where

f ∗ is the optimal value of (2).

The approximate and exact optimal mixing problem is a nature extension

of the NE computation: when the input of the approximate and exact optimal

mixing problem is e1, . . . , em and e1, . . . , en, the standard basis of Rm and Rn,

it is exactly the NE computation problem (1).

The motivation of the optimal mixing problem is twofold.

• Algorithm design and analysis.

To guarantee a certain approximation bound, current polynomial-time

algorithms for approximate NE all follow a search-and-mix method [12].

It can be divided into two polynomial-time phases. In the search phase,
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an algorithm computes a fixed number of strategies of each player. In

the mixing phase, the algorithm then make specific convex combina-

tions of the selected strategies and outputs the one with the minimum

f value. However, such a design paradigm has several limitations:

– Different approaches seldom integrate. The search phases of

these algorithms follow very different and even incomparable ap-

proaches, e.g., gradient descent [10, 11], linear programming [14],

and zero-sum game [15, 16]. However, it is worth considering

whether an algorithm with better approximation bounds can be

designed by combining these different approaches. The optimal

mixing problem, which allows to mix any strategies, offers a uni-

fied framework for such a combination.

– Overemphasis on worst cases. To guarantee an approximation

bound, all mixing phase design in the literature only focuses on

the worst-case instances [12], which are rare compared to other

instances [17, 18, 12, 19]. However, such focuses may hinder the

practical usefulness of these algorithms. It is natural to directly

find the optimal convex combination for every instance, which is

essentially an optimal mixing problem.

• Computational complexity of approximate NE under support

restrictions. It has been shown in [20, 21] that adding certain natural

requirements increases the complexity of computing a Nash Equilib-

rium (NE) from PPAD-complete [2] to NP-complete. However, this

conclusion does not necessarily hold when considering approximate
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Nash Equilibria, which is a more computationally appropriate notion

that accounts for bounded rationality.1 For example, deciding the ex-

istence of an exact NE with a specific support is NP-complete [20]. In

contrast, by slightly adjusting the probabilities in the strategy profile,

we can demonstrate that for any support, there always exists an ϵ-NE

on it.

From above observations, we know that the complexity of approximate

NE computation could be very different from that of exact NE compu-

tation if we put certain restrictions on the solution. The optimal mixing

problem provides a unified framework to reexamine the effect of such

restriction over approximate NE, especially the support restriction.

1.2. Our contributions

Bearing these motivations, we develop algorithms for the approximate

and exact optimal mixing problems. Informally, we have that:

Theorem 1.1 (Main results). When s ≤ 2, t ≤ 3 or s = 1, t = poly(n),

there exists an algorithm solving any optimal mixing problem in poly(m,n)

time. Moreover, there exists an algorithm solving any ϵ-optimal (s, t)-mixing

problem in time poly(m,n, s, t)

(
e+ e√

ϵ/2

)s+t

and space poly(m,n, s, t).

This theorem provides various implications, as is described below.

• Algorithm design and analysis:

1According to [22], approximate NE is a more realistic solution concept as it involves

bounded rationality.
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– Integration of different approaches: Our algorithms can be

used to combine arbitrary strategies computed by different ap-

proaches. Thus, the combined strategy fuses advantages from

these different approaches.

– Instance-optimal mixing phases: With these algorithms, we

propose general approximate and exact polynomial-time algorithms

for instance-optimal mixing phases. There is no need to design the

mixing phase ad hoc in the future. Interestingly, [23] shows that

there is an automatic way to derive the approximation bound for

any search-and-mix algorithm, even when using our algorithms as

the mixing phase. Thus, together with our algorithms, the mixing

phase design is fully automated.2

• Computational complexity of approximate NE under support

restrictions:

– Restrictions enlarge the complexity: As is shown in Table 1,

our algorithms establish upper bounds for finding the best approx-

imate NE over certain support. Table 1 shows the upper bound

complexity of approximate NE with support restrictions (the left

column, where the support of their approximate NE must be over

certain pure strategies) is significantly larger than that of approx-

imate NE without support restrictions (the right column). This

2A perhaps surprising result given by [23] is that for each algorithm in the literature,

the approximation bound with our algorithms as the mixing phase is the same as original

ad hoc ones!
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is consistent with the cases in exact NE computation [20, 21].

– Approximate NE with restrictions could be more diffi-

cult than exact NE: The upper bound results reveal a counter-

intuitive separation between the complexities of approximate and

exact Nash Equilibria (NE). Specifically, the complexity of de-

ciding the existence of a 1/nO(1)-approximate NE under support

restrictions is 2O(n logn). Surprisingly, this is even higher than the

complexity for finding an exact NE under the same support re-

strictions, which is 2O(n) by support enumeration [24]. While it

is commonly believed that approximate NE are easier to compute

than exact NE, this intuition does not always hold when there

is no guarantee of existence due to support restrictions. In such

cases, demonstrating the non-existence of a 1/nO(1)-approximate

NE can be more challenging than showing the non-existence of an

exact NE.

Remark 1.1. One may note that in Theorem 1.1, we stop at (2, 3) for exact

optimal mixing problem. We discuss the reason in Section 6.

1.3. Related Work

Complexity and Approximation of NE.

The computational complexity of approximate NE has been extensively

studied. Initially, Papadimitriou [27] introduces a general complexity class

PPAD and shows that computing 1/2n-NE lies in PPAD. Later, computing

1/ poly(n)-NE is shown to be PPAD-complete for k-player games with any
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ϵ s, t Θ(n) ≤ n n

> 1/3 ?; 2O(n) poly(n) [10]

∈ [ϵ∗, 1/3] ?; 2O(n) ?; nO(logn/ϵ2) [22]

< ϵ∗, const quasi-poly(n)2 [25]; 2O(n) quasi-poly(n)2 [25]; nO(logn/ϵ2) [22]

= 1/nO(1) PPAD-hard [2]; 2O(n logn) PPAD-complete [2]; 2O(n) [26]

= 1/2O(n) PPAD-hard [2]; 2O(n2) PPAD-complete [2]; 2O(n) [26]

= 0 (exact) FNP-hard [20, 21]; ? PPAD-complete [2]; 2O(n) [26]

Table 1: This table shows the results of ϵ-optimal (s, t)-mixing problem with distinct pure-

strategy input. Without loss of generality, we assume m = n and s ≤ t. The results are

presented in “lower bound; upper bound” pairs if the two bounds are not matched. Our

new results are in boldface.

fixed k ≥ 2 [2, 3]. Moreover, computing NE in two-player games is hard

even in the smoothed meaning [2], or restricting the rank of game to con-

stant [28]. These results establish the hardness of approximate NE computing

with polynomial-small approximation. It is well-believed that computing NE

could require exponential time (ETH for PPAD). See, e.g. [29, 25].

For constant approximation, it seems to be easier than polynomial-small

approximation. For any given ϵ > 0, there is an algorithm finding an ϵ-NE

[22] in nO(logn/ϵ2) time (QPTAS). Assuming ETH for PPAD, Rubinstein [25]

shows that there exists a constant ϵ∗ > 0 such that computing an ϵ∗-NE in

a two-player n× n game requires nlog1−o(1) n time. This matches the QPTAS

result [22] up to o(1) term.

The lower bound results on constant approximation lead to the study

of the upper bound, i.e., seeking the minimum ϵ such that there exists a
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polynomial-time algorithm computing an ϵ-NE. Most literature focuses on

two-player (bimatrix) games in the literature. A series of polynomial-time

algorithm

[15, 2, 14, 30, 10, 31, 11] have been proposed, with the approximation from

the beginning of 3/4 [31] to the state-of-the-art 1/3 + δ [10]. For a more

thorough introduction, see [12].

Notably, all the results above, including algorithms and hardness results,

heavily rely on the existence of NE. In fact, if we want to find NE with

certain natural requirements, such as strong NE, NE over a certain support,

or with certain social welfare, such NE may not exist. Moreover, by using

Sat to make reductions, [20, 21] show that deciding the existence of such NE

is NP-compete. The FNP-hardness result in Table 1 is a direct corollary of

this reduction. However, to the best of our knowledge, there is no literature

at all for similar discussions over approximate NE.

NE Computation in Practical Applications.

Emerging from game theory, NE computation has been widely applied

in many fields, including Internet economics, computer science, and machine

learning. Most prominently, NE computing is a core component in many

multi-agent reinforcement learning (MARL) algorithms, including PSRO [7],

Nash-Q [4], Nash-VI [6], and Nash-V learning [5]. MARL has been success-

fully applied to train machine agents that can defeat the top human players in

electronic games, including AlphaStar [9] in StarCraft II and OpenAI Five [8]

in Dota 2. With such fruitful applications, it is demanding to design efficient

algorithms for NE.
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1.4. Paper Organization

This paper is organized as follows. In Section 2, we introduce the basic

concepts and notations. In Section 3, we present the polynomial-time algo-

rithms for the optimal mixing problem. In Section 4, we present an algorithm

for the approximate optimal mixing problem. In Section 5, we show how to

apply the optimal mixing problem to make an instance-optimal enhancement

to the search-and-mix method in the literature. In Section 6, we conclude the

paper, discuss the limitations of our work, and propose future directions.

2. Preliminaries

Asymptotic Notations.

We use the standard asymptotic notations O(·) and Θ(·) to describe the

asymptotic behavior of functions. For two positive functions f and g, f =

O(g) means that there exists a constant c > 0 such that f(n) ≤ c · g(n) for

all sufficiently large n. f = Θ(g) means that f = O(g) and g = O(f).

Vectors and Matrices.

Denote the n-dimensional Euclidean space by Rn. The standard or-

thonormal basis of Rn is e1, . . . , en. Notation [n] := {1, . . . , n} represents

an index set. For vector v ∈ Rn, denote its ith item by vi. For vec-

tor u ∈ Rn, define the following operators: max{u} := max{u1, . . . , un},

min{u} := min{u1, . . . , un}. For two vectors v, w ∈ Rn, notation v ≥ w

represents that vi ≥ wi holds for every i ∈ [n].

For an m× n matrix A, denote its ith row by Ai, its jth column by Aj,

and its item at ith row jth column by Aij. Its transpose is denoted by AT.
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Simplex and Convex Combinations.

A standard (n−1)-simplex is the set ∆n := {α ∈ Rn : α ≥ 0 and
∑n

i=1 αi =

1}. A simplex can be viewed as a probability space and its elements are prob-

ability vectors. For given elements z1, . . . , zw from Rn, the set of their convex

combinations is defined to be {α1z1+ · · ·+αwzw : α ∈ ∆w}, where any vector

α ∈ ∆w determines a convex combination α1z1 + · · ·+ αwzw.

Games, Mixed Strategies, and Best Responses.

We only focus on bimatrix games, in which there are two players. We refer

to them as the row player and the column player. A game can be defined by

a pair of payoff matrices R and C in [0, 1]m×n. When the row player chooses

the ith row and the column player chooses the jth column, their payoffs are

denoted by Rij and Cij, respectively.

For each player, a (mixed) strategy of the row (column) player is a vector

x ∈ ∆m (y ∈ ∆n). In particular, pure strategies are a specific pure strategy

is chosen with a probability of 1. A strategy profile (x, y) refers to a pair

of mixed strategies x and y from the row and column players, respectively.

Given the strategy profile, the payoffs of the row player and the column

player are xTRy and xTCy, respectively. A best response against a strategy

x (y) from the row (column) player is a mixed strategy of the column (row)

player that maximizes the expected payoff against x (y).

Approximate Nash Equilibria from the Optimization Viewpoint.

We follow [11] to define ϵ-NE. First, define the regret of the row player

and the column player as follows:

fR(x, y) := max{Ry} − xTRy and fC(x, y) := max{CTx} − xTCy.
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Define f(x, y) := max{fR(x, y), fC(x, y)}. Then a strategy profile (x, y) is an

ϵ-NE if and only if f(x, y) ≤ ϵ. f(x, y) is called the approximation of (x, y).

Particularly, a strategy profile is an NE if it is a 0-NE. The minimum of f

over ∆m ×∆n is always 0 by the existence of NE [13].

3. Polynomial-Time Algorithms for Optimal Mixing Problems

In this section, we propose polynomial-time algorithms for the optimal

mixing problem. In Section 3.1, we summarize the results. In Section 3.2, we

sketch the main ideas of the algorithms. The detailed algorithms and proofs

are given in Section 3.3.

Recall that the optimal mixing problem is defined as follows.

Definition 3.1 (Optimal (s, t)-mixing problems). An optimal (s, t)-mixing

problem has the following input and output.

• Input: Bimatrix game (R,C), mixed strategies x1, . . . , xs of the row

player and y1, . . . , yt of the column player.

• Output: Coefficients α∗ ∈ ∆s, β∗ ∈ ∆t that minimize

f(α1x1 + · · ·+ αsxs, β1y1 + · · ·+ βtyt).

For convenience, we name an algorithm as an optimal (s, t)-mixing algo-

rithm if it solves any optimal (s, t)-mixing problem.

3.1. Summary of Results

A summary of the results in this section is presented in Theorem 3.1.

Theorem 3.1. The following statements hold.
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1. For any t, there exists an optimal (1, t)-mixing algorithm in O(mnt +

L(t,m)) time, where L(t,m) is the time complexity of solving a linear

program with t variables and m constraints.

2. There exists an optimal (2, 2)-mixing algorithm in O(mn) time.

3. There exists an optimal (2, 3)-mixing algorithm in O(m2(n + logm) +

n log n) time.

3.2. Sketch of the Ideas.

We now sketch the main ideas of the algorithms. We begin by scrutinizing

the form of the problem. The objective function in Definition 3.1 can be

expanded as follows:

max{max{R(β1y1 + · · ·+ βtyt)} − (α1x1 + · · ·+ αsxs)
TR(β1y1 + · · ·+ βtyt),

max{CT(α1x1 + · · ·+ αsxs)} − (α1x1 + · · ·+ αsxs)
TC(β1y1 + · · ·+ βtyt)}.

(3)

A direct observation is that we can suppose without loss of generality

that s ≤ t. Otherwise, we simply exchange the positions of the players.

We first consider the simplest situation where s = 1. In this case, ∆s is

degenerated to a single point. (3) is degenerated to the following form:

max{max{R(β1y1 + · · ·+ βtyt)} − xT
1R(β1y1 + · · ·+ βtyt),

max{CTx1} − xT
1C(β1y1 + · · ·+ βtyt)}.

(4)

This can further be expanded to:

max{β1 (Ry1)1 + · · ·+ βt (Ryt)1 − β1

(
xT
1Ry1

)
− · · · − βt

(
xT
1Ryt

)
, . . . ,

β1 (Ry1)m + · · ·+ βt (Ryt)m − β1

(
xT
1Ry1

)
− · · · − βt

(
xT
1Ryt

)
,(

CTx1

)
− β1

(
xT
1Cy1

)
− · · · − βt

(
xT
1Cyt

)
}.

(5)
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Now, the objective function becomes the maximum of m+1 functions being

all linear in β, respectively. In addition, the constraint β ∈ ∆t is also linear

in β. Using a standard transformation, we can transform the problem into a

linear program with t+1 variables and m+ t+2 constraints. Since the linear

program can be solved in polynomial time [32], we obtain a polynomial-time

optimal (1, t)-mixing algorithm.

Then, we consider the general optimal (s, t)-mixing problem. In this case,

all terms in (3) are non-degenerated. There are three major components in

(3): inner maximum terms max{R(β1y1 + · · · + βtyt)} and max{CT(α1x1 +

· · · + αsxs)}, bilinear terms (α1x1 + · · · + αsxs)
TR(β1y1 + · · · + βtyt) and

(α1x1+· · ·+αsxs)
TC(β1y1+· · ·+βtyt), and the outermost maximum operator

(i.e., max{fR, fC}). Different terms present different difficulties:

1. Inner maximum terms are piecewise-linear in β and α, respectively,

thus convex but non-differentiable.

2. Bilinear terms are bilinear in β and α, thus differentiable but noncon-

vex.

3. The outermost maximum operator is non-differentiable.

Our solution is sketched below:

1. Since the inner maximum terms have a piecewise-linear structure, we

can divide the problem into subproblems on each linear piece.

• To determine the linear pieces, we resort to the famous half-plane

intersection problem in computational geometry.
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• This overcomes the first difficulty.

2. For each subproblem, we derive necessary conditions for the global

optima. Thus, by scanning all points satisfying the conditions, we can

find a global optimum.

• To give the necessary conditions, we combine discrete geometry

(linear-algebraic characterizations of polytopes) and optimization

(KKT conditions).

• To scan these points, we rewrite the conditions into several opti-

mization problems (e.g., univariate quadratic programs and linear

programs) and solve them.

• This overcomes the second and the third difficulty.

3. Finally, we show that there are polynomial number of linear pieces and

in each linear piece a constant number of points to check. Thus, we

can find the global optimum in polynomial time.

To demonstrate the main idea of the algorithms, below we sketch the im-

plementation of the optimal (2, 2)-mixing algorithm over arbitrary strategies

x1, x2 and y1, y2.

Denote the set of all possible convex combinations as A := {(α1x1 +

α2x2, β1y1 + β2y2) : α, β ∈ ∆2}. Observe that the form of the function fR

over the mixing region A is:

fR(α1x1 + α2x2, β1y1 + β2y2)

=max{R(β1y1 + β2y2)} − (α1x1 + α2x2)
TR(β1y1 + β2y2).
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Note that β2 = 1−β1, thus the max term can be written as max{β1R(y1−

y2) +Ry2}. It has the form of the maximum of m linear functions about β1,

which is piecewise linear in β1.

Now, we want to compute the exact form of the piecewise linear function,

given by a sequence of breakpoints 0 = b1 ≤ · · · ≤ bt = 1 (t ≤ m + 1) so

that f is linear in β on each [bi, bi+1]. We need to compute the exact form of

this problem, that is to compute the value of R(y1 − y2) and Ry2 with time

O(mn). Then, this becomes a famous problem in computational geometry

called the envelope problem, which can be solved in time O(m logm).

Similarly, we can compute the linear pieces given by breakpoints 0 =

a1 ≤ · · · ≤ as = 1 (s ≤ n + 1) in time O(n log n). Therefore, on each grid

[ai, ai+1] × [bj, bj+1], i ∈ [s], j ∈ [t], both fR and fC are linear in α and β,

respectively.

Then, we minimize the objective function over each grid and compare the

results to take the one with minimal f value. By doing so, we obtain the

global minimum of f on region A.

On each grid, the objective function is in the form of the maximum of two

bilinear functions g1 and g2. However, it is still non-differentiable. We apply

the KKT condition from continuous optimization to obtain the necessary

optimal conditions for this problem. We can show that the minimum must

be attained at the following three kinds of points:

1. Points where the partial derivative of g1 or g2 with respect to α or β is

zero.

2. The four vertices of the grid.

16



3. Points where g1 = g2.

Now we show that the number of points to be checked of each kind is

bounded by a constant. For the first kind, since the partial derivatives of

bilinear functions g1 and g2 are linear, the problem finally reduces to a uni-

variate linear program, which can be solved in constant time. For the second

kind, there are only four points. Finally, for the third kind, we can solve the

relation between α and β from g1 = g2 and substitute it into the objective

function. Then, we obtain a univariate quadratic program, which can be

easily minimized by checking at most six points.

In words, on each grid, we only need constant time to compute the min-

imum f . Thus, by scanning over all grids in O(mn) time, we can com-

pute the global minimum of f on A. The total complexity is given by

O(mn+m logm+ n log n) = O(mn).

3.3. Optimal Mixing Algorithms

In this section, we present the detailed algorithms for the optimal mixing

problems. First, we present several auxiliary results to address the two basic

difficulties mentioned in Section 3.2. Then, we present the optimal mixing

algorithms for the optimal (1, t)-mixing problem, the optimal (2, 2)-mixing

problem, and the optimal (2, 3)-mixing problem.

3.3.1. Linear Piece Partitioning

In this part, we provide the solution for the first difficulty concerning the

non-differentiability of the inner maximum terms by linear piece partitioning.

The idea is to partition the domain into regions where both fR and fC are

linear in α and β, respectively. To make a concise description, for a function
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F : X → R, we say a linear piece of F is the maximal region Ω ⊆ X such

that F is linear in each variable on Ω.

Consider function max{R(β1y1 + · · ·+ βtyt)}. We have:

max{R(β1y1 + · · ·+ βtyt)}

=max{β1Ry1 + · · ·+ βtRyt}

= max
1≤i≤m

{β1(Ry1)i + · · ·+ βt(Ryt)i}.

(6)

It is the maximum of m linear functions in β. Therefore, we can partition

the domain into several linear pieces, as illustrated in Figure 1.

0 0.2 0.4 0.6 0.8 1 0

0.5

10.5

β1

β2

m
ax

te
rm

Figure 1: Illustration of linear pieces when t = 2. The function figure of max{R(β1y1 +

β2y2)} is in green color. Each different green color represents a different linear piece.

An important observation is that the linear pieces can be expressed by

linear inequalities. When the ith linear function attains the maximum, we

have

∀j ∈ [m], j ̸= i, β1(Ry1)i + · · ·+ βt(Ryt)i ≥ β1(Ry1)j + · · ·+ βt(Ryt)j.
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Namely,

∀j ∈ [m], j ̸= i, β1[(Ry1)i − (Ry1)j] + · · ·+ βt[(Ryt)i − (Ryt)j] ≥ 0.

Thus, each linear piece of the max{Ry} term can be determined by m − 1

inequalities, and forming a (possibly empty) polytope (see Appendix C for

the formal definition). There are m such polytopes, denoted by PC
1 , . . . , PC

m ,

where notation C means that they are collections of the column player’s

strategies.

Similarly, the linear pieces of max{CTx} term can be determined by n−1

inequalities. We denote the polytopes by PR
1 , . . . , PR

n .

Our solution is to divide the problem into each polytope PR
i ×PC

j (i, j ∈

[n]× [m]), which we call the separated polytope. In this way, we can eliminate

the inner max term of (3) and obtain the following problem:

min
α∈(∆s∩PR

i ),β∈(∆t∩PC
j )

max{β1(Ry1)i + · · ·+ βt(Ryt)i

−(α1x1 + · · ·+ αsxs)
TR(β1y1 + · · ·+ βtyt),

α1(C
Tx1)j + · · ·+ αs(C

Txs)j

−(α1x1 + · · ·+ αsxs)
TC(β1y1 + · · ·+ βtyt)}.

(7)

To meet further needs, we also care about solving and expressing the

separated polytopes efficiently. Formally, we want to solve the following

problem:

Definition 3.2 ((t,m)-separation algorithm).

• Input: dimension m, t vectors x1, . . . , xt in Rm.
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• Output: a clockwise enumeration of vertices of P1, . . . , Pm such that

Pi is the polytope {β ∈ ∆t : β1[(x1)i − (x1)j] + · · · + βt[(xt)i − (xt)j] ≥

0, ∀j ∈ [m]}.

When t ≤ 3, we represent the polytopes with a clockwise enumeration

of its vertices. In this case, the separation problem can be restated as a

famous problem in computational geometry called the half-plane intersection

problem [33]. Benefiting from geometric intuitions, we obtain polynomial-

time algorithms for t ≤ 3, as stated below.

Theorem 3.2. There exists a (2,m)-separation algorithm in time O(m logm).

Theorem 3.3. There exists a (3,m)-separation algorithm in time O(m2 logm).

While these algorithms are standard in computational geometry, for com-

pleteness, we still provide the detailed algorithms and complexity analysis in

Appendix A.4 and Appendix A.5.

We also note that if we only require the “appropriate” expression in Def-

inition 3.2 to be a vertex enumeration of the polytope, then in general cases,

it can be stated in the famous vertex enumeration problem.

Suppose we are given a polytope in Rt determined by m inequalities, then

McMullen’s upper bound theorem [34] gives a close upper bound A(mt/2) on

the number of its vertices |V |.

Several algorithms are proposed for the vertex enumeration problem. Us-

ing the pivoting method, Dyer [35] proposed an O(mt2|V |)-time algorithm.

Then, Avis and Fukuda [36] proposed an O(mt|V |)-time algorithm, which has

remained state-of-the-art since then. For a brief summary of this subject, see

[37] as a reference.
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We note that our algorithms (Algorithm 2 and Algorithm 3) are faster

than these algorithms in the corresponding cases. Indeed, when t = 2, the

time complexity of vertex enumeration is O(m3). For t = 3, the time com-

plexity is O(m3.5).

It is also worth mentioning the complexity results regarding this problem.

For the unbounded case (polyhedra), vertex enumeration has been proven to

be NP-hard [38]. However, for the bounded case (the case of our problem,

which is bounded in ∆t), it is still an open problem. There is a strong

indication of NP-hardness, though, as [39] proved that uniformly sampling

the vertices is NP-hard.

3.3.2. Optimization over Polytopes

Using linear piece separation, we have transferred the form of the problem

into solving the subproblem (7). To solve this subproblem, we first derive

optimal conditions for a slightly generalized problem. We present the results

used for algorithms in this part. Since the proof of these results is either

standard or technical, we defer them to the appendix.

For differentiable functions g1, g2 and polytope S, consider the following

optimization problem:

minimize max{g1(x), g2(x)}

s.t. x ∈ S.
(8)

We begin our preparation by a direct application of the KKT condition

(see theorem 12.1 in [40] for details).

Lemma 3.1. Consider any U ∈ Rk×n, V ∈ Rk, R ∈ Rj×n, T ∈ Rj such that

every row of U,R is not zero. Define a convex polytope S = {x ∈ Rn : Ux ≤
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V,Rx = T} . Suppose g1 and g2 are two real-valued differentiable functions

defined on S. Set g = max{g1, g2}. If the ranges of g1,g2 on S are [m1,M1]

and [m2,M2], respectively, then we have:

1. If m1 ≥ M2, minS g(x) = m1. The minimum is attained precisely on set

g−1
1 (m1).

2. If m2 ≥ M1, minS g(x) = m2. The minimum is attained precisely on set

g−1
2 (m2).

3. Otherwise, minS g(x) = minS∗ g(x) , where S∗ is the union of following

sets:

{x ∈ S : g1(x) = g2(x)},
x ∈ S : g1(x) > g2(x),

∃λ ≥ 0 such that ∇g1(x) + λT

U

R

 = 0, ∀i ∈ [k], λi(Uix− Vi) = 0

 ,


x ∈ S : g2(x) > g1(x),

∃λ ≥ 0 such that ∇g2(x) + λT

U

R

 = 0, ∀i ∈ [k], λi(Uix− Vi) = 0

 .

And the minimum must be attained on S∗.

The proof is presented in Appendix A.1.

Now we turn to polytopes. For concepts in polytopes, see Appendix C

and textbook [41]. The following proposition captures the relationship of

geometric properties and constraint expressions, which helps in the further

analysis of the minimization problem on a certain polytope.
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Proposition 3.1. Consider the polytope S =
{
x ∈ Rn : aTi x ≤ bi, ∀i ∈ [k]

}
,

where ai ∈ Rn \{0}, bi ∈ R. Suppose the dimension of S, denoted by dim(S),

is m ≤ n. Then we have

1. There exists vectors u1, . . . , un−m ∈ Rn and real numbers v1, . . . , vn−m ∈

R such that the affine hull aff(S) of S can be written in the form{
x ∈ Rn : uT

i x = vi, ∀i ∈ [n−m]
}

.

2. Vector d is parallel to S (denoted by d ∥ S) if and only if for every

i ∈ [n−m], uT
i d = 0.

The representations of geometric concepts about S can be presented in the

following order.

3. (Representation of S) There exists a set W ⊆ [k] of indices such that:

S =
{
x ∈ Rn : uT

i x = vi, ∀i ∈ [n−m]
}
∩
{
x ∈ Rn : aTi x ≤ bi, ∀i ∈ W

}
.

4. (Representation of boundary ∂S and interior S◦) Moreover:

∂S = {x ∈ S : ∃i ∈ W,aTi x = bi}, S◦ = {x ∈ S : ∀i ∈ W,aTi x < bi}.

5. (Representation of facets of S) For every j ∈ W , S ′
j :=

{
x ∈ S : aTj x = bj

}
is a distinct facet of S, and every facet of S coincides with exactly one

S ′
j.

6. (Representation of faces of S) For any face T of S, dim(T ) ≤ m − 1,

and T can be expressed as the intersection of facets of S.

The proof is presented in Appendix A.2.

Now we combine discrete geometry and optimization. We derive three

corollaries from Lemma 3.1 to deal with simpler cases.
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Corollary 3.1. For any convex polytope S ∈ Rn such that dim(S) = n,

suppose without loss of generality that it has a form that S = {x ∈ Rn :

Ux ≤ V }, where U ∈ Rm×n, V ∈ Rm and no rows of U are zero. We have

the following statements.

1. The minimum of g on S must be obtained on

S+ =∂S ∪ {x ∈ S : ∇g1(x) = 0} ∪ {x ∈ S : ∇g2(x) = 0}

∪{x ∈ S : g1(x) = g2(x)}.
(9)

2. Let e1, . . . , en be the standard orthonormal basis. For any ei, we can divide

the facets of S into two collections: Pi and Ni according to whether they are

parallel to ei. Define ∂SP =
⋃

T∈Pi
T and ∂SN =

⋃
T∈Ni

T . ∂SP ∪∂SN = ∂S.

For any index i, statement 1 still holds if we substitute ∂S with(
∂SP

⋂ ⋃
k=1,2

{
x ∈ S :

∂gk
∂xi

(x) = 0

})⋃
∂SN .

3. If the polytope S has the form [m1,M1] × [m2,M2] × · · · × [mn,Mn] with

mi < Mi, then the minimum must be obtained on

S+ = {x ∈ Rn : ∀i, xi ∈ {mi,Mi}}
⋃

⋃
i∈[n],k∈{1,2}

({
x ∈ S :

∂gk
∂xi

(x) = 0

})⋃
{x ∈ S : g1(x) = g2(x)} .

(10)

The proof is presented in Appendix A.3.

Statement 1 can be used to compute the minimum of g on any polytope S

with recursion. Since all components of S+ have at most (n− 1) dimensions

(∂S can be split into many facets), we can compress certain dimensions and
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recursively compute the (n − 1)-dimensional case. Statement 3 is a special

case of statement 2, where the polytope is a hyperrectangle. Although we

only present algorithms to solve cases where t ≤ 3, we present statements

2 and 3 in a very general form. They are useful for further investigation of

cases with t > 3.

3.4. Detailed Algorithms

With all above preparations, we are now able to derive our algorithms for

the optimal mixing problem.

We first consider the optimal (1, t)-mixing problem. Note that this prob-

lem can be directly transformed into a linear program given by Algorithm 1.

We denote the complexity of solving a standard-form linear program with

t variables and m inequalities by L(t,m), which is polynomial in t and m.

See, e.g. [42]. Then, the complexity of our optimal (1, t)-mixing algorithm

is O(mnt+ L(t,m)).

Algorithm 1 Optimal (1, t)-mixing algorithm
Input: An m × n bimatrix game (R,C), mixed strategies x1 for the row

player and y1, y2, . . . , yt for the column player.

Output: β ∈ ∆t that minimizes f(x1, β1y1 + · · ·+ βtyt).

1: Calculate and store the m-dimensional vectors Ry1, . . . , Ryt and the val-

ues xT
1Ry1 . . . x

T
t Ryt. // This can be done by matrix multiplication

within O(mnt+mt) time.

25



2: Solve the optimal α of the following linear program and output it.

min
α

h

s.t. h ≥ max(CTx1)− α1(x
T
1Cy1)− · · · − αt(x

T
t Cyt),

for every i ∈ [m], t ≥ α1(Ry1)i + · · ·+ αt(Ryt)i−

α1(x
T
1Ry1)− · · · − αt(x

T
t Ryt),

for every j ∈ [t], αj ≥ 0,

α1 + · · ·+ αt = 1.

// The problem is to solving a non-negative linear programming

problem with m+ 1 constraints and t+ 1 variables.

To avoid overwhelming the paper with detailed case-by-case discussions,

we only give sketches of the optimal (2, 2) and (2, 3)-mixing algorithms here

in Algorithm 2 and Algorithm 3. The full process, correctness, and time-

complexity analysis are presented in Appendix A.6 and Appendix A.7.

Algorithm 2 Optimal (2, 2)-mixing algorithm
Input: A size m × n bimatrix game (R,C), mixed strategies x1, x2 for the

row player and y1, y2 for the column player.

Output: α, β ∈ ∆2 that minimizes f(α1x1 + α2x2, β1y1 + β2y2).

1: Apply the (2, n)-separation algorithm (see Appendix A.4) for α that out-

puts separated polytopes PR
i , where i ∈ [n] (actually intervals of α1). //

Time complexity O(n log n)

2: Apply the (2,m)-separation algorithm (see Appendix A.4) for β that

outputs separated polytopes PC
j , where j ∈ [m] (actually intervals of

β1). // Time complexity O(m logm)
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3: Compute the exact form of Fi(α, β) = fi(αx1+(1−α)x2, βy1+(1−β)y2),

where i ∈ {R,C}. // Time complexity O(mn)

4: for i = 1 : n, j = 1 : m do

5: Minimize f in each grid PR
i ×PC

j . Apply statement 3 in Corollary 3.1.

It suffices to scan the following regions:

1. Points with ∂Fk(α, β)/∂α = 0 or ∂Fk(α, β)/∂β = 0, where k =

R,C.

2. The four vertices of its domain.

3. Points with FR(α, β) = FC(α, β).

// For details, see Appendix A.6.

6: end for

// We can show that each case can be done in constant time over

m,n. Thus, the time complexity is O(mn).

7: Finally, compare the f -values of the minimum on the mn grids and obtain

the global minimum of f on ∆2 ×∆2. // Time complexity O(mn)

Algorithm 3 Optimal (2, 3)-mixing algorithm
Input: A size m × n bimatrix game (R,C), mixed strategies x1, x2 for the

row player and y1, y2, y3 for the column player.

Output: α ∈ ∆2, β ∈ ∆3 that minimizes f(α1x1+α2x2, β1y1+β2y2+β3y3).

1: Apply the (2, n)-separation algorithm (Appendix A.4) for α that outputs

separated polytopes PR
i , i ∈ [n] (Actually are intervals for α1). // Time

complexity O(n log n)

2: Apply the (3,m)-separation algorithm (Appendix A.5) for β that outputs

separated polytopes PC
j , j ∈ [m]. // Time complexity O(m2 logm)
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3: Compute the exact form of Fi(α, β, γ) = fi(αx1 + (1− α)x2, βy1 + γy2 +

(1− β − γ)y3), i ∈ R,C. // Time complexity O(mn)

4: for i = 1 : n, j = 1 : m do

5: Minimize f in each grid PR
i ×PC

j . Apply statement 2 in Corollary 3.1,

it suffices to scan the following regions:

1. (α, β) belongs to side surfaces of S and

(a) either there exists k ∈ R,C such that ∂Fk/∂γ = 0, or

(b) (α, β) is in the intersection of side surfaces and top/bottom

surfaces.

2. (α, β) belongs to top/bottom surfaces of S and

(a) there exists k ∈ R,C such that either ∂Fk/∂α = 0 or ∂Fk/∂β =

0, or

(b) (α, β) is in the intersection of side surfaces and top/bottom

surfaces.

3. FR(α, β) = FC(α, β).

4. ∇FR(α, β) = 0 or ∇FC(α, β) = 0.

// For details, see Section Appendix A.7

6: end for

// We can show that each case can be done in O(m) time. Thus,

the time complexity is O(m2n).

7: Finally, compare the f -values of the minimum on the mn grids, and

obtain the global minimum of f on ∆2 × ∆3. // Time complexity

O(mn)
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4. An Algorithm for Approximate Optimal Mixing Problems

In this section, we present an algorithm solving any ϵ-optimal (s, t)-mixing

problem. Recall that the ϵ-optimal (s, t)-mixing problem is defined as follows.

Definition 4.1 (ϵ-Optimal (s, t)-mixing problem). Given ϵ > 0, the ϵ-

optimal (s, t)-mixing problem has the following input and output:

• Input: Bimatrix game (R,C), mixed strategies x1, . . . , xs of the row

player and y1, . . . , yt of the column player, and an ϵ > 0.

• Output: Coefficients α̃ ∈ ∆s, β̃ ∈ ∆t such that for any α ∈ ∆s, β ∈ ∆t,

the following inequality holds:

f(α̃1x1+· · ·+α̃sxs, β̃1y1+· · ·+β̃tyt) ≤ f(α1x1+· · ·+αsxs, β1y1+· · ·+βtyt)+ϵ.

The main result in this section is the following theorem.

Theorem 4.1. There exists an algorithm solving any ϵ-optimal (s, t)-mixing

problem in time poly(m,n, s, t)

(
e+ e√

ϵ/2

)s+t

and space poly(m,n, s, t).

Corollary 4.1. For ϵ-optimal (s, t)-mixing problem, when s, t are constant,

there exists an FPTAS; when s, t = O(log n), there exists a PTAS.

We note that term
(
e+ e√

ϵ/2

)s+t

is unlikely to be improved to

poly(m,n, s, t, 1/ϵ). Otherwise, by taking all pure strategies as input, we

can obtain an FPTAS for ϵ-NE, which is proved by Theorem 1.3 in [2] to be

impossible unless PPAD ⊆ P.

As is observed in Section 3, the objective function f contains the max-

imum terms and bilinear terms. The bilinear terms causes non-convexity,

which makes it very hard to find the global minimum.
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Based on such observations, our method adopts the following idea. First,

we use small grids to cover the whole domain. Next, on each grid, we use

linear functions to approximate the bilinear terms. After the linear approxi-

mation, the objective function becomes piecewise linear, which can be solved

by linear programming. By a delicate selection of grid, we can ensure that the

optimal solution of the linear approximation is close to the optimal solution

of the original problem, thus giving a close enough approximation. Finally,

we output the best solution among all grids.

The algorithm is described in Algorithm 4.

Algorithm 4 Algorithm for ϵ-Optimal (s, t)-Mixing Problem
Input: An m × n bimatrix game (R,C), mixed strategies x1, . . . , xs of the

row player and y1, . . . , yt of the column player, and a precision parameter

ϵ > 0.

Output: α̃ ∈ ∆s, β̃ ∈ ∆t that solves the ϵ-optimal (s, t)-mixing problem.

1: Let X := (x1, . . . , xs) and Y := (y1, . . . , yt).

2: gR(α, β) := fR(Xα, Y β) = max{RY β} − αTXTRY β,

gC(α, β) := fC(Xα, Y β) = max{CTXα} − αTXTCY β,

g(α, β) := max{gR(α, β), gC(α, β)},

LR(α, β;αo, βo) := max{RY β} − αT
oX

TRY β − αTXTRY βo + αT
oX

TRY βo,

LC(α, β;αo, βo) := max{CTXα} − αT
oX

TCY β − αTXTCY βo + αT
oX

TCY βo,

L(α, β;αo, βo) := max{LR(α, β;αo, βo), LC(α, β;αo, βo)}.

3: Let p :=
⌈
s/
√

ϵ/2
⌉

and q :=
⌈
t/
√

ϵ/2
⌉
.

4: Form the following points:

(
α(i1,...,is), β(j1,...,jt)

)
:= (i1/p, . . . , is/p, j1/q, . . . , jt/q) ,
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where i1, . . . , is ∈ [p],
∑s

k=1 ik = p, j1, . . . , jt ∈ [q], and
∑t

k=1 jk = q.

// There are
(
p+s−1
s−1

)(
q+t−1
t−1

)
points in total.

5: for i1, . . . , is ∈ [p],
∑s

k=1 ik = p, j1, . . . , jt ∈ [q],
∑t

k=1 jk = q do

6: Define the region

Γ(i1, . . . , is, j1, . . . , jt) := {(α, β) : α ∈ ∆s, β ∈ ∆t,

for every k ∈ [s], αk ∈ [ ik−1
p

, ik+1
p

], for every l ∈ [t], βl ∈ [ jl−1
q
, jl+1

q
].}

7: Solve the optimal α∗
(i1,...,is)

, β∗
(j1,...,jt)

of the following optimization prob-

lem.

min
α,β

L
(
α, β;α(i1,...,is), β(j1,...,jt)

)
,

s.t. (α, β) ∈ Γ(i1, . . . , is, j1, . . . , jt).

(11)

// Note that this can be formulated in a linear program with

m+n+3s+3t+2 constraints and s+t+1 variables. The problem

is reduced to solving a non-negative linear programming.

8: end for

9: Output the α∗
(i1,...,is)

, β∗
(j1,...,jt)

with the smallest g
(
α∗
(i1,...,is)

, β∗
(j1,...,jt)

)
among

all i1, . . . , is, j1, . . . , jt.

Now we verify the correctness of Algorithm 4 and analyze its time com-

plexity. We first show that the linear approximation is close to the original

function.

We need the following lemma.

Lemma 4.1. Consider two functions f1, f2 defined on the same set X , if

|f1(x) − f2(x)| ≤ ϵ for all x ∈ X , then |minx f1(x) − minx f2(x)| ≤ ϵ and

|maxx f1(x)−maxx f2(x)| ≤ ϵ.
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Proof. Let x1 be a global minimum point of f1 and x2 be a global minimum

point of f2. Then we have

f2(x2) ≥ f1(x2)− ϵ (by assumption)

≥ f1(x1)− ϵ. (since x1 is the minimizer of f1)

Symmetrically, we have f1(x1) ≥ f2(x2)− ϵ. Thus we have

|f1(x1)− f2(x2)| ≤ ϵ,

as desired.

The proof of the maximum is similar.

Then we have the following lemma, which shows that the linear approxi-

mation is good enough for the original problem on each grid.

Lemma 4.2. On each Γ(i1, . . . , is, j1, . . . , jt), the following inequalities hold:

• |g(α, β)− L(α, β;α(i1,...,is), β(j1,...,jt))| ≤ ϵ/2,

• |min(α,β) g(α, β)−min(α,β) L(α, β;α(i1,...,is), β(j1,...,jt))| ≤ ϵ/2.

Proof. To simplify the notation, we denote α(i1,...,is) by αo and β(j1,...,jt) by

βo. We further denote Γ(i1, . . . , is, j1, . . . , jt) by Γo.

We first show that |LR − gR| ≤ ϵ/2 on Γo. For any (α, β) ∈ Γ(αo, βo), by
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definition, we have:

|LR(α, β;αo, βo)− gR(α, β)|

=|(α− αo)
TXTRY (β − βo)|

≤
s∑

i=1

t∑
j=1

|αi − αo,i| · |βj − βo,j| · |(XTRY )ij|

≤
s∑

i=1

t∑
j=1

1

pq
|(XTRY )ij|︸ ︷︷ ︸

≤1

≤ st

pq
≤ st

s/
√

ϵ/2 · t/
√
ϵ/2

= ϵ/2.

Similarly, we have |LC − gC | ≤ ϵ/2 on Γo. Since L = max{LR, LC} and

g = max{gR, gC}, taking X = {R,C}, by Lemma 4.1, we have |L − g| =

|maxx∈X Lx −maxx∈X gx| ≤ ϵ/2 on Γo, which is the first part of the lemma.

Then, taking X = Γo, by Lemma 4.1, we have∣∣∣∣ min
(α,β)∈X

g(α, β)− min
(α,β)∈X

L(α, β;αo, βo)

∣∣∣∣ ≤ ϵ/2,

which is the second part of the lemma.

Next we show that all grids cover the whole domain ∆s ×∆t.

Lemma 4.3. For any (α, β) ∈ ∆s ×∆t, there exists i1, . . . , is, j1, . . . , jt such

that (α, β) ∈ Γ(i1, . . . , is, j1, . . . , jt).

Proof. For any (α, β) ∈ ∆s ×∆t, take (i1, . . . , is, j1, . . . , jt) by the following

procedure:

Algorithm 5 Selection of i1, . . . , is.
Input: α ∈ ∆s, β ∈ ∆t.

Output: i1, . . . , is, j1, . . . , jt.

1: for k from 1 to s do
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2: if
∑k−1

l=1 (αl − il
p
) ≥ 0 then

3: Set ik = ⌈pαk⌉

4: else

5: Set ik = ⌊pαk⌋

6: end if

7: end for

The selection of j1, . . . , jt is similar. Now we show that the procedure is

correct.

First, we show i1 + · · · + is = p, i1, . . . , is ∈ [p]. Since α ∈ ∆s, it is clear

that i1, . . . , is ∈ [p]. Then we show that the sum is equal to p.

For this purpose, we show
∣∣∣∑k

l=1

(
αl − il

p

)∣∣∣ < 1
p

for any k ∈ [s] by induc-

tion over k.

• For k = 1, we have
∣∣∣α1 − i1

p

∣∣∣ < 1
p
, since α1 ∈ [0, 1].

• For k > 1, suppose we have
∣∣∣∑k−1

l=1

(
αl − il

p

)∣∣∣ < 1
p

by induction hy-

pothesis. If
∑k−1

l=1

(
αl − il

p

)
≥ 0, then by ik = ⌈pαk⌉, we have −1

p
<

αk − ik
p
≤ 0, thus

−1

p
<

k∑
l=1

(
αl −

il
p

)
=

k−1∑
l=1

(
αl −

il
p

)
+

(
αk −

ik
p

)
<

1

p
− 0 =

1

p

as desired. Another case is similar.

Thus, we have
∣∣∣∑s

l=1

(
αl − il

p

)∣∣∣ < 1
p
.

Note that
∑s

l=1 αl = 1, we have
∣∣∣1−∑s

l=1
il
p

∣∣∣ < 1
p
. Thus, |p−

∑s
l=1 il| <

1. Since i1, . . . , is ∈ [p], we have
∑s

l=1 il ∈ Z. Thus, we must have i1 + · · ·+

is = p.
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Finally, we show that (α, β) ∈ Γ(i1, . . . , is, j1, . . . , jt). It simply follows

by the construction of ik’s and jk’s and the definition of Γ.

We summarize the above two lemmas in the following proposition.

Proposition 4.1 (Correctness). Algorithm 4 is an ϵ-optimal (s, t)-mixing

algorithm.

Proof. Suppose the exact solution of the optimal (s, t)-mixing problem is

(α∗, β∗). By Lemma 4.3, there exists i1, . . . , is, j1, . . . , jt such that (α∗, β∗) ∈

Γ(i1, . . . , is, j1, . . . , jt). For simplicity, we denote L(α, β;α(i1,...,is), β(j1,...,jt)) by

L(α, β).

Consider the solution (α′, β′) = (α∗
(i1,...,is)

, β∗
(j1,...,jt)

) in (11). It suffices to

prove that

|g(α∗, β∗)− g(α′, β′)| ≤ ϵ.

By Lemma 4.2 part 1, we have |g(α∗, β∗)−L(α′, β′)| = |minα,β g(α, β)−

minα,β L(α, β)| ≤ ϵ/2. By Lemma 4.2 part 2, we have |g(α′, β′)−L(α′, β′)| ≤

ϵ/2. Thus, by triangular inequality, we have |g(α∗, β∗) − g(α′, β′)| ≤ ϵ, as

desired.

Finally, we analyze the time complexity of Algorithm 4, which completes

the proof of Theorem 4.1.

Proof of Theorem 4.1. First, we need to compute RY,XTRY,CTX,XTCY

for further use. This can be done in O(poly(m,n, s, t)) time.

Then, the algorithm enters a loop that repeats
(
p+s−1
s−1

)(
q+t−1
t−1

)
times. By
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Stirling’s approximation, we have(
p+ s− 1

s− 1

)
≤ (p+ s− 1)s−1

(s− 1)!
=

(p+ s− 1)s−1 · s
s!

= O

(
(p+ s− 1)s−1

√
s

( s
e
)s

)

≤ O


(
(1/
√

ϵ/2 + 1)s
)s √

s

( s
e
)s


= O

(
√
s

((
1√
ϵ/2

+ 1

)
e

)s)
.

Similarly, we have
(
q+t−1
t−1

)
≤ O

(
√
t

(
1 + e√

ϵ/2

)t
)

. Thus, the total number

of iterations is O

(
√
st

(
e+ e√

ϵ/2

)s+t
)

.

In each iteration, we need to solve (11). By a standard transformation,

it is equivalent to the following linear program:

min
α,β,t

t,

s.t. t ≥ (RY )iβ − αTXTRY β, i ∈ [m],

t ≥ (CTX)jα− αTXTCY β, j ∈ [n],

α ∈ ∆s, β ∈ ∆t,

αk ∈ [ ik−1
p

, ik+1
p

], k ∈ [s],

βl ∈ [ jl−1
q
, jl+1

q
], l ∈ [t].

It is a linear program with m+ n+ 3s+ 3t+ 2 constraints and s+ t+ 1

variables, which can be solved in poly(m,n, s, t) time [32].

In total, the time complexity of the whole algorithm is given by

poly(m,n, s, t) + poly(m,n, s, t)

(
e√
ϵ/2

)s+t

= poly(m,n, s, t)

(
e√
ϵ/2

)s+t

.
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5. Applications to the Search-and-Mix Methods

In this section, we show how to apply the optimal mixing problem to

make an instance-optimal enhancement to the search-and-mix methods in the

literature. For another use case, we can also use the optimal mixing problem

to assemble the different outputs of various algorithms for approximate NE

in the literature. See Appendix B for some illustrative empirical results.

As is summarized by [12], in the literature, polynomial-time algorithms

for approximate NE follow a search-and-mix method. Such methods can

be divided into two phases. In the search phase, an algorithm computes

several strategies of each player in polynomial time. In the mixing phase,

the algorithm then make convex combinations of the selected strategies into

several strategy profiles and outputs the profile with the minimum f value.

An illustration is presented in Figure 2.

Find several strategies x1, · · · , xs

of the row player and y1, · · · , yt of

the column player in polynomial

time.

Perform specific mixing operations on

these strategies and obtain the strat-

egy profiles (x̃1, ỹ1), . . . , (x̃u, ỹu). Next,

compute i∗ = argmin1≤i≤u f(x̃i, ỹi) and

output the strategy profile (x̃i∗ , ỹi∗).

Figure 2: Procedure of the search-and-mix method in the literature

However, the mixing phases in the literature are ad hoc, since the mix-

ing coefficients are selected specifically for corresponding search phase with
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certain properties. A typical example is as follows.

Example 5.1 (BBM algorithm [15]).

• Search phase: Compute an NE (x∗, y∗) of the zero-sum game (R −

C,C − R)3. Let g1 = fR(x
∗, y∗) and g2 = fC(x

∗, y∗). By symmetry,

assume without loss of generality that g1 ≥ g2. Then compute r1 ∈

brR(y
∗) and b2 ∈ brC(r1).

• Mixing phase: Mix strategies in the search phase and obtain strategy

profiles (x∗, y∗) and (r1, (1− δ2)y
∗+ δ2b2), where δ2 = (1− g1)/(2− g1).

Output the one with the smaller f value.

Note that the mixing coefficient δ2 is chosen specifically for this search phase

to produce an optimal approximation bound of 0.38. If we choose δ2 to be

other values, for example, 1/2, then it is not hard to show that the approxi-

mation guarantee will only be 0.5.

Now, we relate the optimal mixing problem to the search-and-mix meth-

ods in the literature. The traditional ad hoc designed mixing phases focus

too much on the worst case and not useful in practice. However, from the

perspective of our work, the mixing phase is essentially an optimal mixing

problem. We can use the approximate and exact optimal mixing problem to

design new mixing phases for the search-and-mix methods, which computes

the instance-optimal mixing coefficients. The new procedure is presented in

Figure 3.

3Computing NE in zero-sum games can be modeled by a linear program and thus can

be solved in polynomial time. See, e.g., [24].
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Find several strategies

x1, · · · , xs for the row

player and y1, · · · , yt for

the column player in poly-

nomial time.

Calculate mixing coefficients α∗ ∈

∆s, β
∗ ∈ ∆t in polynomial time that

minimize f(α1x1+ · · ·+αsxs, β1y1+ · · ·+

βtyt) as a function in α and β. Output

(α∗
1x1 + · · ·+ α∗

sxs, β
∗
1y1 + · · ·+ β∗

t yt).

Figure 3: The new procedure for the search-and-mix method

Our exact algorithm for the optimal mixing problem can cover the need of

all mixing phases in the literature. Moreover, our approximation algorithm

can be used for most future mixing phases. For any constant number of

strategies in the search phase, our approximation algorithm is an FPTAS.

Beyond that, when s, t = O(log n), our approximation algorithm is a PTAS

and when s, t = poly(log n), our approximation algorithm is a QPTAS. They

can all be used in the new polynomial-time procedure of the search-and-mix

methods.

To conclude this section, as an example, we show how to design a new

mixing phase for Example 5.1 using the optimal mixing problem.

Example 5.2 (New mixing phase for the BBM algorithm). Recall that in

the search phase we obtain x∗, r1 for the row player and y∗, b2 for the column

player. Then, the new mixing phase is to input payoff matrices R,C, row

player’s mixed strategies x∗, r1, column player’s mixed strategies y∗, b2, solve

the optimal (2, 2)-mixing problem to obtain α∗, β∗ and then output (α∗x∗ +

(1− α∗)r1, β
∗y∗ + (1− β∗)b2).
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6. Conclusion and Discussion

In this paper, we study the optimal mixing problem of approximate Nash

equilibrium computation in bimatrix games. We develop algorithms for the

exact and approximate optimal mixing problems. These algorithms can be

used to enhance and integrate arbitrary existing constant approximate NE

algorithms, offering a powerful tool for the design of approximating NE al-

gorithms. Moreover, these algorithms allow us to explore the implications of

support restrictions on approximate NE, and provide the first upper bound

on this problem.

6.1. Difficulties in Studying Exact Optimal Mixing Algorithms

In Theorem 1.1, we stop at (2, 3) for the exact optimal mixing problem.

However, there is a fair reason for this. In general, the optimal mixing

problem takes the form of a quadratically constrained quadratic program

(QCQP). Recall that the objective function in Definition 3.1 can be expanded

as follows:

max{max{R(β1y1 + · · ·+ βtyt)} − (α1x1 + · · ·+ αsxs)
TR(β1y1 + · · ·+ βtyt),

max{CT(α1x1 + · · ·+ αsxs)} − (α1x1 + · · ·+ αsxs)
TC(β1y1 + · · ·+ βtyt)}.

By rewriting the maximum operators as constraints, we can see that the

optimal mixing problem is indeed a QCQP:
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min
α,β,z1,z2,w

w

s.t.
s∑

i=1

αi = 1, αi ≥ 0,
t∑

j=1

βj = 1, βj ≥ 0,

x =
s∑

i=1

αixi, y =
t∑

j=1

βjyj,

z1 ≥ RT
i y for all i,

z2 ≥ xTCj for all j,

w ≥ z1 − xTRy, w ≥ z2 − xTCy.

As a QCQP, the optimal mixing problem is an optimization problem. By

using the KKT conditions, the optimization problem can be reduced to a

system of polynomial equations and inequalities:

fi(x1, . . . , xs, y1, . . . , yt) = 0, i = 1, . . . ,

gj(x1, . . . , xs, y1, . . . , yt) ≤ 0, j = 1, . . . ,

where fi and gj are polynomials. The exact optimal mixing problem is to

find a solution to this system of polynomial equations and inequalities. Such

a system is called an algebraic variety in the context of algebraic geometry.

Thus, the exact solution is an element belonging to an algebraic variety.

For the case of (2, 3), this paper shows that the solution can be reduced

to a solution of a univariate quintic equation, which can be solved radically.

However, for the case of (3, 3), it is not even clear how to reduce the problem

to a univariate equation. This phenomenon is not unique in NE computation.

For example, the exact NE of a 3-player game is also an algebraic variety,

and it is still not clear how to solve it using a Turing machine [43].
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The difficulties in studying the exact optimal mixing problem or NE lie es-

sentially in the real algebraic nature of the problem. In computability theory,

the Blum-Shub-Smale machine [44], or BSS machine, is a model of computa-

tion intended to describe computations over the real numbers. Indeed, using

the BSS machine, it is possible to solve the optimal mixing problem. How-

ever, the BSS machine surpasses the computability of the Turing machine,

as it can represent uncountable sets, while the Turing machine can only rep-

resent countable sets. Thus, the exact optimal mixing problem is probably

not computable by a Turing machine.

6.2. Future Directions

This work also brings up several open questions:

• How does the existence of NE benefit the computation of NE?

In Table 1, the upper bound of approximate NE under restrictions is far

greater than the upper bound of approximate NE without restrictions.

This suggests that the existence of NE is crucial for the computation of

approximate NE. The optimal mixing problem provides a new method-

ology to study the computational complexity of approximate NE with-

out the existence guarantee. We hope it can be used to understand the

benefit of the NE existence to approximate NE computation.

• How to distinguish the optimization problem, function prob-

lem, and the decision problem of approximate NE? Note that

the literature of approximate and exact NE is composed of three parts:

the optimization problem, the function problem, and the decision prob-

lem. Their relations are very intricate but important in understanding
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the underlying structure of NE computation. However, such differences

are often ignored in the literature. Thus, it is important to distinguish

them and understand their relations.

• What is the relationship between approximate NE and QCQP?

In our optimization perspective, the approximate NE computation prob-

lem is a special case of the quadratically constrained quadratic program

(QCQP) problem. We utilize the QCQP structure to develop algo-

rithms for the optimal mixing problem. On the other hand, QCQP is

known to be NP-hard [45] and has no constant approximation algorithm

unless NP = P [46], while the constant approximate NE computation

has quasi-polynomial time algorithms. It suggests that there is some

interesting connection between the approximate NE computation and

a subclass of QCQP problem.

• How to extend our approach to compute approximate NE with

other restrictions? Note that the core component of our approach is

the utilization of the bilinear structure of f and grid covering. Thus,

by writing other approximate NE restrictions, like maximum social

welfare, as optimization problems with bilinear term, we can extend

our approach to compute approximate NE with other restrictions.
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Appendix A. Missing Proofs and Algorithms

Appendix A.1. Proof of Lemma 3.1

In case 1, take any x ∈ S. Then g2(x) ≤ M2 ≤ m1 ≤ g1(x). Therefore,

minS g(x) = minS g1(x) = m1. The minimum is obtained exactly in {x ∈ S :

g1(x) = m1}, namely g−1
1 (m1).

Case 2 is symmetric to case 1, so we omit it.

For case 3, we consider which set function g reaches the minimum. Sup-

pose that x is a minimum, and g1(x) ̸= g2(x), then suppose without loss of
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generality that g1(x) > g2(x). By the continuity of g1, g2, g1 > g2 in some

neighborhood of x. Therefore, g = g1 in this neighborhood, so x must be a

local minimum for g1. The problem becomes solving the first-order condition

for optimization with linear constraints. Thus x must also be a KKT point

of g1 and satisfy the KKT condition given in the statement.

Appendix A.2. Proof of Proposition 3.1

We prove the statement in the order of 1, 2, 3, 5, 4, and 6.

Proof of Statement 1 and 2. For statement 1, we note that notation dim(S) =

m means that the smallest affine space containing it has dimension m. There-

fore, the space can be expressed by the solution of (n−m) linear equations,

say uT
i x = vi, i ∈ [n −m]. Moreover, the remaining constraints cannot con-

tain any equation like uTx = v; otherwise, dim(S) ≤ m − 1, which violates

the definition of the affine hull.

For statement 2, by the definition of parallel, d ∥ S if and only if there

exists a line segment defined by x0, x1 ∈ S such that x1 = x0 + δd, where

δ is a nonzero constant. Since x0, x1 ∈ S, we have for every i ∈ [n − m],

uT
i x0 = vi and uT

i (x0 + δd) = vi, so uT
i d = 0.

To prove statements 3, 5 and 4, we need the representation theorem for

polytopes. We say a halfspace (inequality) aTx ≤ b is facet-defining (for

polytope P ) if P ∩ {x ∈ Rn : aTx ≥ b} defines a facet of P .

Theorem Appendix A.1 (Representation theorem for polytopes, Theorem

2.15 in [41]). A subset P ⊆ Rn is a polytope if and only if it can be described

as a bounded intersection of facet-defining halfspaces, one for each facet, and
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of the affine hull of P . Moreover, the facet-defining inequalities are uniquely

determined (if we write them as aTi x ≤ 1), and none of them can be deleted.

Proof of Statement 3 and 5. By Theorem Appendix A.1, we can write S in

the form

aff(S) ∩
⋂
i∈W̃

{
x ∈ Rn : ãTi x ≤ 1

}
.

Here, inequalities ãTi x ≤ 1 are facet-defining. Since they are unique and can-

not be deleted, each inequality ãTi x ≤ 1 corresponds to a constraint aTj x ≤ bj

with aj = bj ãi. For each i ∈ W̃ , pick such a j. Then we have already selected

an index subset W of [k]. By statement 1, aff(S) can be written in the form

of
{
x ∈ Rn : uT

i x = vi, ∀i ∈ [n−m]
}

. Now we have proved statement 3.

For statement 5, since constraint aTj x ≤ bj, j ∈ W is fact-defining, again

by Theorem Appendix A.1, S ′
j = aff(S) ∩

{
x ∈ Rn : aTj x ≤ bj

}
exactly rep-

resents a facet and vice versa.

Now we prove statement 4.

Proof of statement 4. We first prove that

S1 :=
{
x ∈ S : ∀k ∈ W,aTkx < bk

}
⊆ S◦.

Pick x ∈ S1. By the continuity of aTkx, there exists a small neighborhood U

of x such that U ∩ S ⊆ S1. Therefore, x is an interior point of S. Since x is

arbitrary, S1 ⊆ S◦ holds.

Second, we show that

S2 :=
{
x ∈ S : ∃k ∈ W,aTkx = bk

}
⊆ ∂S.
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Note that by the construction of statement 3, all constraints indexed in W in

S can not be deleted. It then guarantees that for every k ∈ W , there exists

x0 ∈ Rn \ S such that aTkx0 > bk and aTj x0 ≤ bj holds for each j ∈ W \ {k}.

Suppose x1 ∈ S2. Then aTkx1 = bk for some k ∈ W . Consider the direction

d = x0−x1. Notice that the set
{
x ∈ Rn : aTkx ≥ bk and ∀j ∈ W \ {k}, aTj x ≤ bj

}
is convex. Since x1, x0 are both in it, the line segment defined by x1, x0 also

lies in it. Therefore, for arbitrarily small ϵ > 0,

aTk (x1 + ϵ(x0 − x1)) = (1− ϵ) aTkx1︸︷︷︸
=bk

+ϵ aTkx0︸︷︷︸
>bk

> bk.

Hence x1 + ϵ(x0 − x1) /∈ S and thus x1 ∈ ∂S. Since x1 is arbitrary, S2 ⊂ ∂S

holds.

Now we combine these two results. Clearly S1 ∩ S2 = ∅ and S1 ∪ S2 =

S = ∂S ∪ S◦. So we must have S1 = S◦ and S2 = ∂S.

Finally, statement 6 is the direct corollary of a result on face lattice.

Definition Appendix A.1. A graded lattice is a finite partially ordered set

(S,≤) if it shares all the following properties.

• It has a unique minimal element 0̂ and a unique maximal element 1̂.

• Every maximal chain has the same length.

• Every two elements x, y ∈ S have a unique minimal upper bound in S,

called the join x ∨ y, and every two elements x, y ∈ S have a unique

maximal lower bound in S, called the meet x ∧ y.

For a graded lattice, the minimal elements of S \ 0̂ are called atoms, and

the maximal elements of S \ 1̂ are called coatoms.
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A lattice is atomic if every element is a join x = a1 ∨ · · · ∨ ak of k ≥ 0 of

atoms. Similarly, a lattice is coatomic if every element is a meet of coatoms.

Theorem Appendix A.2 (Proposition 2.3 and Theorem 2.7 in [41]). Let

P be a convex polytope. Consider the set of all faces L(P ), partially ordered

by inclusion.

1. Set L(P ) is a graded lattice of length dim(P ) + 1. The meet operation

is exactly the intersection of sets.

2. The face lattice L(P ) is both atomic and coatomic.

3. The faces of F are exactly the faces of P that are contained in F .

Proof of statement 6. By Theorem Appendix A.2, L(S) is a graded lattice.

Suppose F is a face in L(S). Then since L(S) is coatomic, F is the meet

(i.e., intersection) of coatoms, i.e., facets.

Appendix A.3. Proof of Corollary 3.1

We prove the corollary by discussing all possible cases that achieve the

minimum. Since g(x) = max{g1(x), g2(x)}, we partition the domain into

three parts according to whether g1(x) is greater than, smaller than or equal

to g2(x).

Proof of Statement 1. By symmetry, we only need to consider the case of

S1 :=
{
x ∈ S : g1(x) > g2(x), ∃λ ≥ 0,∇g1(x) + λTU = 0 and ∀i ∈ [m], λi(Uix− Vi) = 0

}
.

It suffices to show that for every x ∈ S1, either ∇g1(x) = 0 or x ∈ ∂S.

For a given x ∈ S1, if ∇g1(x) = 0, then λ = 0 is a solution for the

KKT conditions given in Theorem 12.1 in [40]. Otherwise, since ∇g1(x) =
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−λTU ̸= 0, there must exist i such that λi ̸= 0. Therefore, we must have

Uix = Vi. By definition, every x ∈ S satisfies Uix ≤ Vi. By our assumption

on U , Ui ̸= 0. So there is a vector d ∈ Rn such that Uid > 0. For any ϵ > 0,

Ui(x+ ϵd) > Vi. Hence x+ ϵd /∈ S, i.e., x ∈ ∂S.

To prove the rest statements, we need the following claim.

Claim Appendix A.1. For any face T of S, if T is parallel to ei, we have:

for any x ∈ T ∩ S1, if the minimum of f can be obtained at x, then either x

is contained in a facet not parallel to ei or ∂g1(x)/∂xi = 0.

Proof. Since x ∈ S1, by the KKT condition given in S1, there exists λ such

that ∇g1(x) = −λTU . Thus ∂g1(x)/∂xi = ∇g1(x)
Tei = −λTUei. Note that

by the definition of parallel, there exists a line l such that l ⊆ aff(T ) and

l ∥ ei. Therefore, for any x ∈ T , there exists a line lx ⊆ aff(T ) such that

x ∈ lx and lx ∥ ei. Define l̃x := lx ∩ T .

If x is not an endpoint of the line segment l̃x, then ±ei are both feasible

directions for x, namely for any sufficiently small ϵ > 0, x±ϵei ∈ T . We show

that in this case, x must satisfy ∂g1(x)/∂xi = 0. The KKT condition implies

that for any j ∈ [n], we either have λj = 0 or Ujx = Vj. If Ujx = Vj, since

x± ϵei ∈ S, Uj(x± ϵei) ≤ Vj = Ujx, which means Ujei = 0. Therefore, either

λj = 0 or Ujei = 0, we have λTUei =
∑

j λjUjei = 0. Thus ∂g1(x)/∂xi =

−λTUei = 0 as desired.

To finish our proof, it suffices to show that if x ∈ S1 ∩ T is an endpoint

of l̃x, then either x is contained in a facet N of S not parallel to ei or

∂g1(x)/∂xi = 0. We prove it by induction on dim(T ).

Suppose dim(T ) = 1. By the definition of polytopes, T must be a one-
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dimensional bounded and closed convex set, i.e., a line segment. In this case,

ei ∥ T , so for any x0 ∈ T , l̃x0 is exactly T . Thus, x0 is the endpoint of l̃x0 if

and only if {x0} is a face of T . By Theorem Appendix A.2, {x0} is a face of

S. Then by statement 6 in Proposition 3.1, {x0} is the intersection of several

facets of S. Since S =
{
x ∈ Rn : UT

i x ≤ Vi, i ∈ [m]
}

, by statement 5 in

Proposition 3.1, the facets of S can be expressed as S ′
i =

{
x ∈ S : UT

i x = Vi

}
,

i ∈ W for some index subset W . Thus there exists a nonempty subset of W ,

denoted by I, such that {x0} =
⋂

i∈I S
′
i and x0 /∈ S ′

j for every j ∈ W \ I.

Note that by assumption dim(S) = n, we have aff(S) = Rn. By statement 3

in Proposition 3.1, S =
{
x ∈ Rn : UT

i x ≤ Vi, ∀i ∈ W
}

. Then we have

{x0} =
⋂
i∈I

S ′
i

=
⋂
i∈I

(
S ∩

{
x ∈ Rn : UT

i x = Vi

})
=S ∩

⋂
i∈I

({
x ∈ Rn : UT

i x = Vi

})
=
{
x ∈ Rn : UT

i x = Vi, i ∈ I, UT
j x < Vj, j ∈ W \ I

}
.

Now we show that there exists a facet S ′
i, i ∈ I not parallel to ei. Suppose on

the contrary that for any i ∈ I, S ′
i is parallel to ei, then we have UT

i ei = 0 by

the definition of parallel. Thus for any k ∈ R, we have UT
i (x0 + kei) = Vi for

every i ∈ I. Note that by continuity there exists a sufficiently small ϵ > 0 such

that for every j ∈ W\I, UT
j (x+ϵei) < Vj. Thus x0+ϵei is also contained in the

set
{
x ∈ Rn : UT

i x = Vi, i ∈ I, UT
j x < Vj, j ∈ W \ I

}
= {x0}, a contradiction.

So we finish the proof of the case dim(T ) = 1.

Now we suppose that the result holds on every h-dimensional face with

h = m − 1 ≤ n − 1, and let dim(T ) = m. Note that for any x ∈ T ◦, there
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exists ϵ > 0 such that every d ∥ aff(T ) satisfies x+ ϵd ∈ T . So x must be an

interior point of l̃x and thus not be an endpoint of l̃x. We have assumed that

x is the endpoint of l̃x, so this is not the case. We must have x ∈ ∂T . By

statement 4 and 5 in Proposition 3.1, x must be contained in a face T ′ ⊆ ∂T

of T with dim(T ′) = m− 1. By Theorem Appendix A.2, T ′ is also a face of

S. If T ′ ∥ ei, then line lx ⊆ aff(T ′) with x ∈ lx. Let l̃′x = lx∩T ′. By the same

argument, l̃′x is a line segment. If x is not an endpoint of this segment, then

we have proved that ∂g1(x)/∂xi = 0 as desired. If x is an endpoint, then by

the induction hypothesis either x is contained in a facet N of S not parallel

to ei or ∂g1(x)/∂xi = 0. Thus the induction holds. If face T ′ is not parallel

to ei, then we show that T ′ is contained in some facet N of S not parallel to

ei. Note that since face T ′ is not parallel to ei, lx ∩ T ′ = {x}. If all facets

S ′ of S containing T ′ are parallel to ei, by the same argument on the case

of dim(T ) = 1, for sufficiently small ϵ > 0, x + ϵei ∈ T ′. However, clearly

x+ ϵei ∈ lx and thus x+ ϵei ∈ lx ∩ T ′, which leads to a contradiction.

Now we can continue the main proof.

Proof of Statement 2. For statement 2, it suffices to show that for every

x ∈ ∂S ∩ S1, either x ∈ ∂SN or both x ∈ ∂SP and ∂g1(x)/∂xi = 0 hold.

Equivalently, we show that for every x ∈ P ∩ S1, where P is a facet paral-

lel to ei, either there exists a facet N which is not parallel to ei such that

x ∈ N , or ∂g1(x)/∂xi = 0. This immediately follows by taking m = n− 1 in

Claim Appendix A.1.
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Proof of Statement 3. We first show that any face T of S must have the form

TI1,I2 :=
∏
i∈[n]

Si.

Here, Si = {mi} for every i ∈ I1, Si = {Mi} for every i ∈ I2 and Si = [mi,Mi]

for every i ∈ [n] \ (I1 ∪ I2), where I1, I2 ⊆ [n] and I1 ∩ I2 = ∅.

By applying statement 3 in Proposition 3.1, S can be written into {x ∈

Rn : xi ≤ Mi,−xi ≤ −mi, ∀i ∈ [n]}. Therefore, by statement 5 in Propo-

sition 3.1, the facets of S is given by S ∩ {x ∈ Rn : xi = mi} or S ∩ {x ∈

Rn : xi = Mi}. By statement 6 in Proposition 3.1, any face T of S can be

expressed as the intersection of several facets. Thus there exist index subsets

I1, I2 such that

T = S ∩
⋂
i∈I1

{x ∈ Rn : xi = mi} ∩
⋂
i∈I2

{x ∈ Rn : xi = Mi}.

If I1 ∩ I2 = ∅, then exactly T = TI1,I2 ; otherwise, if i ∈ I1 ∩ I2, by mi ̸= Mi,

T = ∅. Now, it suffices to show that any TI1,I2 is a face of S. For any

TI1,I2 , consider a = −
∑

i∈I1 ei +
∑

i∈I2 ei, b = −
∑

i∈I1 mi +
∑

i∈I2 Mi. On

the one hand, for any x ∈ S, we have mi ≤ xTei = xi ≤ Mi, so aTx =∑
i∈I1(−xi) +

∑
i∈I2 xi ≤ −

∑
i∈I1 mi +

∑
i∈I2 Mi = b. On the other hand, we

can see that the equality holds if and only if xi = mi for every i ∈ I1 and

xi = Mi for every i ∈ I2. This set is exactly given by TI1,I2 , so TI1,I2 is the

face of S determined by a, b, and we finish our proof.

With the clear description of all the faces of S by TI1,I2 , we can easily see

that a face TI1,I2 is a single point if and only if I1∪I2 = [n]. Also, for any face

T that is not a single point, there exists i ∈ [n] such that i /∈ I1 ∪ I2. So, for

any y = (y1, ..., yn) in T ,
∏

j ̸=i{yj} × [mi,Mi] ⊆ T , which defines a line from
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(y1, . . . , yi−1,mi, yi+1, . . . , yn) to (y1, . . . , yi−1,Mi, yi+1, . . . , yn) parallel to ei.

Therefore, by the definition of parallel, ei ∥ T . So every face T of S is parallel

to some ei.

Suppose x ∈ ∂S. We show that either x is a single point face, or x

belongs to the interior of some face T parallel to some ei. Note that x must

belong to some face T of S. We prove it by induction on the dimension of

T . When dim(T ) = 0, T = {x} is a single point face. For dim(T ) = n,

we only need to consider the case that x /∈ T ◦. Immediately, x ∈ ∂T , so

by Proposition 3.1 and Theorem Appendix A.2, x belongs to some face of S

with lower dimension. The result then follows by the induction hypothesis.

Thus, either x is a single point face given by {x ∈ Rn : ∀i, xi ∈ {mi,Mi}},

or x belongs to the interior of a face T parallel to some ei. We now apply

the result in Claim Appendix A.1. Suppose x is not a single point face

that attains the minimum of f . If g1(x) > g2(x), then ∂g1(x)/∂xi = 0; if

g1(x) < g2(x), then ∂g2(x)/∂xi = 0. So, x must be contained in the set S+

given in this statement.

Appendix A.4. The (2,m)-Separation Algorithm

This problem can be restated as a famous problem in computational ge-

ometry called envelope problem, which is a special case of half-plane inter-

section problem. The half-plane intersection problem can be solved with the

plane sweep method in time O(n log n) with n breakpoints, see, e.g., Section

4.2 of [33]. For completeness, we restate the full algorithm here.

Specifically, suppose we are given two series {ai}ki=1, {bi}ki=1. We want to

compute the breakpoints of function h(x) = maxi∈[k]{aix+bi} in the interval

[0, 1] and the value of h on these points. We present a method based on ideas
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from computational geometry.

First, we turn the case into a1 < a2 < ... < ak. To do so, reorder functions

{aix + bi}i so that a1 ≤ a2 ≤ ... ≤ ak. Then we check all contiguous

pairs (ai, ai+1). If ai = ai+1, then we delete the function with smaller bi,

since it is strictly smaller that the other one. By this procedure, we obtain

a1 < a2 < ... < ak in time O(k log k).

Let us use a list w to memorize the breakpoints and a list t to memorize

the value of h(x) on these points. Define hs(x) = maxi∈[s]{aix + bi}. We

use a recursion method to find the breakpoints by gradually updating the

set of breakpoints from h1(x) to hk(x) = h(x). For the beginning, since

h1(x) = a1x + b1, we can initialize list w with w(0) = 0, w(1) = 1 and list t

with t(0) = b1, t(1) = a1 + b1. Then we consider how to update from hs(x)

to hs+1(x).

By assumption a1 < a2 < ... < as < as+1, function ∆hs(x) = hs(x) −

as+1x− bs+1 is continuous on [0, 1] and decreasing on every linear piece. So

∆hs is decreasing on [0, 1] and has at most one zero point. Therefore, hs(x)

has at most one intersection point with as+1x + bs+1. If such point exists,

say x∗, then we have hs(x) ≤ as+1x+ bs+1 if and only if x ≥ x∗. So, we only

need to add x∗ into list w and delete all the points in list w which belong

to [x∗, 1). Similarly, we add as+1x
∗ + bs+1 into the list t, update the value

corresponding to 1 with as+1+ bs+1 and delete all values between them. The

geometric illustration of such a procedure is given in Figure A.4.

To find such x∗, we use a binary search on index t to locate the proper line

atx+bt forming the intersection point x∗. Such a search costs only logarithm

time of the number of lines.
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x⇤

Figure A.4: Illustration of the update procedure from h3 (orange line on the left) to h4

(orange line on the right). We try to add term a3x+ b3 (dashed line on the left) into the

max operator in h3. a4x+ b4 intersects h3 at a2x+ b2. Thus x∗ (yellow dot) is calculated

and the breakpoints larger than x∗ are deleted. Equivalently, a3x+ b3 is removed (dashed

line on the right).

Now we analyze the time complexity of this algorithm. There are in total

k rounds of binary searches, with the ith round using time O(log i). In total,

the time complexity is O
(∑k

i=1 log i
)

= O(k log k). We collect the above

arguments into the following proposition.

Proposition Appendix A.1. There exists an algorithm that outputs all the

breakpoints of h(x) and their corresponding function values in time O(k log k).

Appendix A.5. The (3,m)-Separation Algorithm

Note that since t = 3, β can be represented by two free variables, i.e.,

β = (x, y, 1 − x − y). Then the polytope Pi in Definition 3.2 is actually

a polygon on the plane. The (3,m)-separation algorithm needs to find a

clockwise enumeration of vertices of Pi. This problem, again, can be stated

by the half-plane intersection. For completeness, we present the algorithm

here.

In fact, a proper application of the (2,m)-separation algorithm will give us
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the desired algorithm. A key observation is that the boundary of a polygon

can be expressed as a union of four parts: left boundary, right boundary,

upper semi-boundary and lower semi-boundary. If we write all constraints of

Pi in the form lj := ãjx+ b̃jy + c̃j ≥ 0, j ∈ [k], then each constraint belongs

to exactly one part of the boundary:

1. When b̃j = 0, lj = 0 is a candidate of the left (right) boundary if ãj > 0

(< 0).

2. When b̃j ̸= 0, lj = 0 is a candidate of the upper (lower) semi-boundary

if b̃j < 0 (> 0).

In the second case, we write the boundary into the form y = ãx + b̃. Then

we can apply Proposition Appendix A.1 on the upper (lower) semi-boundary

to obtain ordered vertices in time O(k log k). Next, we combine the two

semi-boundaries to obtain the leftmost and rightmost vertices.

Now we determine the vertical boundaries. The left (right) boundary, if

exists, has the maximum (minimum) −c̃j/ãj, which can be found in O(k)

time. If the left (right) boundary does not rule out the leftmost (rightmost)

vertex, then there is no left (right) boundary. Otherwise, by a binary search

on vertices of the two semi-boundaries, we can find two segments adjacent to

the left (right) boundary in O(log k) time. An illustration of this procedure

is presented in Figure A.5.

We collect the above arguments into the following proposition.

Proposition Appendix A.2. There exists an algorithm that outputs all

vertices in a clockwise order of the polygon Pi in time O(k log k).

56



<latexit sha1_base64="ZwKkaJcdU3hHlnhMyVD4tdz55QM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dI5JHAhswODYzMzm5mZo1kwxd48aAxXv0kb/6NA+xBwUo6qVR1p7sriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWB0O/Wbj6g0j+S9Gcfoh3QgeZ8zaqxUe+oWS27ZnYEsEy8jJchQ7Ra/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/ODp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/ZTLODEo2XxRPxHERGT6NelxhcyIsSWUKW5vJWxIFWXGZlOwIXiLLy+TxlnZuyxf1M5LlZssjjwcwTGcggdXUIE7qEIdGCA8wyu8OQ/Oi/PufMxbc042cwh/4Hz+AOl5jQY=</latexit>x

<latexit sha1_base64="tmEvmksfb9cWDAa5xB1ckWUhUbQ=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVx71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MH6v2NBw==</latexit>y

2(2) 1(1)

7(R)

6(3)
5(2)

4

3

<latexit sha1_base64="6Pz+s+vc98zcUvLE4If4VTILdio=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAInsKu+DoGvXjwEME8IFnC7GQ2GTI7s8zMKnHJl3jxoIhXP8Wbf+Mk2YNGCxqKqm66u8KEM20878spLC2vrK4V10sbm1vbZXdnt6llqghtEMmlaodYU84EbRhmOG0niuI45LQVjq6mfuueKs2kuDPjhAYxHggWMYKNlXpuuXsjxUCxwdBgpeRDz614VW8G9Jf4OalAjnrP/ez2JUljKgzhWOuO7yUmyLAyjHA6KXVTTRNMRnhAO5YKHFMdZLPDJ+jQKn0USWVLGDRTf05kONZ6HIe2M8ZmqBe9qfif10lNdBFkTCSpoYLMF0UpR0aiaQqozxQlho8twUQxeysiQ6wwMTarkg3BX3z5L2keV/2z6untSaV2mcdRhH04gCPw4RxqcA11aACBFJ7gBV6dR+fZeXPe560FJ5/Zg19wPr4BQ1iTgA==</latexit>

=)

2

1
2

3

1L

R

<latexit sha1_base64="ZwKkaJcdU3hHlnhMyVD4tdz55QM=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaNryPRi0dI5JHAhswODYzMzm5mZo1kwxd48aAxXv0kb/6NA+xBwUo6qVR1p7sriAXXxnW/ndzK6tr6Rn6zsLW9s7tX3D9o6ChRDOssEpFqBVSj4BLrhhuBrVghDQOBzWB0O/Wbj6g0j+S9Gcfoh3QgeZ8zaqxUe+oWS27ZnYEsEy8jJchQ7Ra/Or2IJSFKwwTVuu25sfFTqgxnAieFTqIxpmxEB9i2VNIQtZ/ODp2QE6v0SD9StqQhM/X3REpDrcdhYDtDaoZ60ZuK/3ntxPSv/ZTLODEo2XxRPxHERGT6NelxhcyIsSWUKW5vJWxIFWXGZlOwIXiLLy+TxlnZuyxf1M5LlZssjjwcwTGcggdXUIE7qEIdGCA8wyu8OQ/Oi/PufMxbc042cwh/4Hz+AOl5jQY=</latexit>x

<latexit sha1_base64="tmEvmksfb9cWDAa5xB1ckWUhUbQ=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8hV3xdQx68ZiAeUCyhNlJbzJmdnaZmRXCki/w4kERr36SN//GSbIHTSxoKKq66e4KEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqhg0Wi1i1A6pRcIkNw43AdqKQRoHAVjC6m/qtJ1Sax/LBjBP0IzqQPOSMGivVx71S2a24M5Bl4uWkDDlqvdJXtx+zNEJpmKBadzw3MX5GleFM4KTYTTUmlI3oADuWShqh9rPZoRNyapU+CWNlSxoyU39PZDTSehwFtjOiZqgXvan4n9dJTXjjZ1wmqUHJ5ovCVBATk+nXpM8VMiPGllCmuL2VsCFVlBmbTdGG4C2+vEya5xXvqnJZvyhXb/M4CnAMJ3AGHlxDFe6hBg1ggPAMr/DmPDovzrvzMW9dcfKZI/gD5/MH6v2NBw==</latexit>y

Figure A.5: Illustration of the procedure computing ordered vertices (vertical line cases).

On the left, the lower semi-boundary and the upper one is colored with green and orange,

respectively. The vertices are labeled clockwise on each semi-boundary. On the right, we

try to add vertical lines. The black dashed line does not change the structure at all, so it

is omitted. The black solid line will change the structure, and the new labels of vertices

are computed (and in the bracket is the original labels).

Appendix A.6. The Optimal (2, 2)-Mixing Algorithm

We first give some notations Let FR(α, β) = fR(αx1+(1−α)x2, βy1+(1−

β)y2). Define FC(α, β) similarly. Then let F (α, β) = max{FR(α, β), FC(α, β)}.

The goal of the optimal (2, 2)-mixing algorithm is to calculate the minimum

of F on square A = [0, 1]× [0, 1]. Now we state the algorithm.

Applying the (2,m)-separation algorithm in Appendix A.4, we can con-

struct a mesh grid of (α, β) so that on each grid, both FR and FC are linear

in α and β respectively. Then both FR and FC have the form x1 + x2α +

x3β+ x4αβ, where xi’s are constants determined by FR or FC values on four

vertices of the grid. Our next step is then to give a method computing the

minimum point of F (α, β) on each grid.

On each grid, by statement 3 in Corollary 3.1, it suffices to minimize

F = max{FR, FC} over:

1. points with ∂Fk(α, β)/∂α = 0 or ∂Fk(α, β)/∂β = 0, k ∈ {R,C},
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2. the four vertices of the grid, and

3. points with FR = FC .

• (Case 1) Equations ∂Fk(α, β)/∂α = 0 and ∂Fk(α, β)/∂β = 0 have the

form that α or β takes a fixed value.4 Hence the problem becomes

computing the minimum of two univariate linear functions, which is

easy to solve.

• (Case 2) We just need to enumerate the value of F on the four vertices.

• (Case 3) By solving the equation FR(α, β) = FC(α, β), we obtain an

expression of β given by a linear fraction of α. If the denominator linear

function of α is zero, then we can solve it just like in case 1. Otherwise,

by substituting the expression of β into the expression of F = FR, we

convert this problem into finding the minimum of a function g(α) with

the form (a2α
2+a1α+a0)/(b1α+b0). This can be done by calculating its

values at two boundary points and points with zero derivatives. Note

that g′(α) = 0 is equivalent to a quadratic equation in α, which has at

most two solutions. So in this case we can test at most four points to

find the minimum.

We collect the above arguments into the following proposition:

Proposition Appendix A.3. There exists an algorithm finding the mini-

mum point of F (α, β) on any grid in O(1) time.

4When the coefficient of α (or β) is zero, all or none of α (or β) solve the equation.
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With these results above, we can efficiently calculate the minimum point

of f on each grid where both FR and FC are linear in α and β respectively.

Note that the numbers of breakpoints of α and β are at most m and n respec-

tively, so there are at most mn grids. On each grid the minimization proce-

dure takes O(1) time, implying a total O(mn) time on A. Thus time complex-

ity of calculating the minimum of f on A is O(max{m,n} logmax{m,n}) +

O(mn) = O(mn). We summarize it as the following theorem.

Theorem Appendix A.3. Give any strategies x1, x2 ∈ ∆m and y1, y2 ∈ ∆n,

let

F (α, β) = f(αx1 + (1− α)x2, βy1 + (1− β)y2), α, β ∈ [0, 1].

Then there exists an algorithm finding the minimum point of F (α, β) in time

O(mn).

Appendix A.7. The Optimal (2, 3)-Mixing Algorithm

We begin by some notations. Let

FR(α, β, γ) =max{R(γy1 + (1− γ)y2)}−

(αx1 + βx2 + (1− α− β)x3)
TR(γy1 + (1− γ)y2),

FC(α, β, γ) =max
{
CT(αx1 + βx2 + (1− α− β)x3)

}
−

(αx1 + βx2 + (1− α− β)x3)
TC(γy1 + (1− γ)y2).

Define F (α, β, γ) = max{FR(α, β, γ), FC(α, β, γ)}. Then the algorithm in

this part minimizes F on the prism A = {(α, β, γ) ∈ [0, 1]3 : α + β ≤ 1}.

Using (2,m)-separation algorithm in Appendix A.4 and (2,m)-separation
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algorithm in Appendix A.7, we can obtain the linear region5 of function F .

Our next step is then to minimize F on each linear region, in which both FR

and FC have form a0αγ+a1βγ+a2γ+a3α+a4β+a5. Note that every linear

region S is given by the Cartesian product of a polygon P and an interval I.

Thus by statement 2 in Corollary 3.1, the minimum of F must be obtained

when:

1. (α, β) belongs to side surfaces of S and

(a) either there exists k ∈ {R,C} such that ∂Fk/∂γ = 0, or

(b) (α, β) is in the intersection of side surfaces and top/bottom sur-

faces.

2. (α, β) belongs to top/bottom surfaces of S and

(a) there exists k ∈ {R,C} such that either ∂Fk/∂α = 0 or ∂Fk/∂β =

0, or

(b) (α, β) is in the intersection of side surfaces and top/bottom sur-

faces.

3. FR(α, β) = FC(α, β).

4. ∇FR(α, β) = 0 or ∇FC(α, β) = 0.

For case 1b and 2b, note that the boundary is formed by O(m) line

segments. Furthermore, FR and FC are linear on each segment. Thus it

suffices to check their intersection and two endpoints on each segment.

5To shorten statements, we say region X is a linear region of function F if F is linear

in every variable on X.
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For case 2a and case 4, the equation of zero derivative gives a linear

equation on γ. Then γ takes a fixed value. Now we have to minimize F

over the polygon P of (α, β). We can use statement 2 in Corollary 3.1 again,

and minimize F at points on the boundary of P , with FR = FC , and with

zero partial derivative in α or β. The case of the boundary is similar to case

1b and 2b, consuming time O(m). The rest cases are similar to discussions

in Proposition Appendix A.3: We can turn the problem into minimizing a

univariate function g. The only difference here is the domain J of g. By the

same calculation in the proof of Proposition Appendix A.3, it can be shown

that J is a segment (or line) J̃ parallel or perpendicular to α = 0 when we

ignore the restriction of P . Domain J then can be determined by searching

the intersection points of J̃ and the boundary of P in O(m) time.

For case 1a, the equation of zero derivative gives a linear equation on

(α, β). Then the equation produces a line l on (α, β). Now, the feasible set

of (α, β) is a segment L determined by the intersection of l and P . Similar to

J , we can compute two endpoints of L in O(m) time. Note that by a suitable

linear transformation from (α, β) to (α′, β′), the equation of l becomes α′ = 0.

Then on L × I, F becomes a function of (β′, γ) being linear in β′ and γ,

respectively. Now we can apply Proposition Appendix A.3 to minimize F on

L× I in O(1) time.

For case 3, by FR = FC , we obtain an expression of γ given by the fraction

of linear functions in α and β. A special case is that the denominator equals

zero. We can deal with this case in the same way as case 1a. Otherwise, by

substituting this expression into FR, it suffices to minimize a function h(α, β)

with the form (c0 + c1α + c2β + c3α
2 + c4αβ + c5β

2)/(d0 + d1α + d2β) on a
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given linear region.

When d1 = d2 = 0, this is to solve quadratic programming on a polygon

with O(m) sides. The minimum is taken either on the sides or at interior

points with zero derivatives. Since it has only two variables, we can cancel

one of the variables via the linear equation of a side. Then the minimization

on the side is equivalent to minimizing a univariate quadratic function on

a segment. On the other hand, the zero-derivative condition is exactly two

linear equations with two variables. In both situations, the calculation can

be completed within O(m) time.

Otherwise, we substitute the denominator with θ, and the expression is

transformed into

G1(α, θ) :=
e0 + e1α + e2α

2

θ
+ e3 + e4α + e5θ.

First, we consider the minimum about θ. By the property of hyper-

bolic function, the minimum can only be obtained at the boundary points

or at θ = ±
√

(e0 + e1α + e2α2) /e5 (if exists). Since θ is linear in (α, β)

and the domain of (α, β) is a polygon P , the domain of θ is a interval

given by [Mmin(α),Mmax(α)], where Mmin,Mmax are piecewise linear func-

tions with O(m) pieces. By considering vertices of P in order, we can cal-

culate linear pieces of Mmin and Mmax in O(m) time, denoted by Imin
i and

Imax
j , respectively. So we only need to consider O(m) cases that θ takes

Mmin(α) on α ∈ Imin
i , Mmax(α) on α ∈ Imax

j , or ±
√

(e0 + e1α + e2α2) /e5

when (e0 + e1α + e2α
2) e5 ≥ 0. In each case, it suffices to find the minimum

of either

e0 + e1α + e2α
2

t(α)
+ e3 + e4α + e5t(α), t ∈ {Mmin,Mmax} or
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e3 + e4α± 2
√

e5 (e0 + e1α + e2α2),

where α belongs to a certain interval. Each case can be solved by calculating

points on the boundary and points with zero derivatives in O(m) time.

We conclude the discussion above with the following proposition.

Proposition Appendix A.4. There exists an algorithm finding the mini-

mum point of F (α, β, γ) on linear region S = P × I in O(m) time, where

P is a polygon of (α, β) formed by O(m) linear constraints and I is a closed

interval of γ.

Now we come back to function F (α, β, γ). Using Proposition Appendix A.1

and Proposition Appendix A.2, we can split the domain of F into O(mn)

linear regions in time O(n log n + m2 logm). Then on each region, we can

use Proposition Appendix A.4 to compute the minimum value of F in time

O(m). The total time complexity is then O (m2(n+ logm) + n log n). We

summarize it into the following theorem.

Theorem Appendix A.4. Give any x1, x2, x3 ∈ ∆m and y1, y2 ∈ ∆n, let

F (α, β, γ) = f (αx1 + βx2 + (1− α− β)x3, γy1 + (1− γ)y2) ,

where α, β, γ, α + β ∈ [0, 1]. Then there exists an algorithm finding the

minimum point of F (α, β, γ) in time O (m2(n+ logm) + n log n).

Appendix A.8. The Approximate Optimal Algorithms and Proof of Theorem 4.1

In this part, we present the full algorithm for the ϵ-optimal (s, t)-mixing

problem and prove Theorem 4.1. The algorithm is shown in Algorithm 4.
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Appendix B. Using Optimal Mixing Algorithms as an Assembling

Tool for Approximate NE

Suppose we have a finite set of algorithms A = {A1, . . . , Ak} for com-

puting approximate Nash equilibria in bimatrix games. Then, we can use

(approximate) optimal mixing algorithms to assemble the outputs of these

algorithms to obtain a new algorithm as Algorithm 6.

Algorithm 6 Assembled Approximate NE Algorithm
Input: A bimatrix game (R,C).

Output: An approximate Nash equilibrium (x∗, y∗).

1: Run each algorithm Ai ∈ A on (R,C) to obtain an approximate NE

(xi, yi).

2: Solve the optimal mixing problem with the set of strategies {x1, . . . , xk}

and {y1, . . . , yk}, resulting in an strategy profile (x∗, y∗).

3: return (x∗, y∗).

To illustrate the effectiveness of this assembling tool in practice, we con-

duct some small experiments.

1. Payoff Matrices: We generated two random 3×3 matrices, R and C,

where each entry is drawn from a uniform distribution over the interval

[0, 1].

2. Strategies: For each experiment, we randomly generated three pure

strategy vectors x1, x2, x3 and y1, y2, y3 for the two players, each of

dimension 3.

3. Optimization Method: We used the Sequential Least Squares Pro-

gramming (SLSQP) algorithm to solve the constrained optimization
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problem. An initial guess was set to a uniform distribution, αi = βi =
1
3

for all i. The solution provides nearly optimal weights α∗ and β∗, which

are used to compute the mixed strategies.

The experimental results are presented in Table B.2. We highlight the

ones where the optimal mixing f -value is smaller than the f -values of all the

strategies.

Trial Strategy 1

f -value

Strategy 2

f -value

Strategy 3

f -value

Optimal Mix-

ing f -value

1 0.127 0.095 0.284 0.095

2 0.187 0.198 0.213 0.086

3 0.118 0.144 0.205 0.087

4 0.256 0.121 0.220 0.085

5 0.139 0.174 0.136 0.111

6 0.120 0.197 0.258 0.076

7 0.126 0.258 0.139 0.087

8 0.183 0.112 0.141 0.092

9 0.204 0.232 0.202 0.086

10 0.302 0.175 0.125 0.109

Table B.2: Trial results for different input strategies and optimal mixing f -values

As is shown in Table B.2, the optimal mixing f -value is smaller than the

f -values of all the strategies in most of the trials. Although this experiments

are only for illustrative purposes, it shows that the using of optimal mix-

ing algorithms can indeed improve the approximation in practice. Further
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comprehensive experiments are needed to investigate the performance of the

assembled algorithm in more practical scenarios.

Appendix C. Definitions in Discrete Geometry

Below are the definitions of several concepts in discrete geometry. The

concepts below are either from [47] or basic concepts in linear algebra. We

append the location of the concepts from [47] for further interests.

1. (Affine Space, P1, Section 1.1) An affine space is a displacement of a

vector space. It has the form of v+V = {v+ x : x ∈ V }, where v is a vector

and V is a vector space. Equivalently, an affine space can be expressed as{
x ∈ Rn : uT

i x = vi, i ∈ [m]
}

for some ui ∈ Rn \{0} and vi ∈ R, i ∈ [m]. The

dimension of an affine space V + v is defined to be the dimension of V .

2. (Affine Hull, P1, Section 1.1) The affine hull of a set S ∈ Rn, denoted by

aff(S), is the minimal affine space containing it.

3. (Dimension, P83, Section 5.2) The dimension of a set S ∈ Rn, denoted by

dim(S), is given by the dimension of its affine hull.

4. (Hyperplane, P3, Section 1.1) In any linear space H, a hyperplane is an

affine subspace whose dimension is one less than that of H.

5. (Half-space, P3, Section 1.1) In Rn, a half-space is the set {x ∈ Rn : aTx ≤

b} or {x ∈ Rn : aTx < b}, where a is a nonzero vector in Rn and b ∈ R.

6. (Polytope, P82, Section 5.2) A convex polytope S is defined as a bounded

set that is the intersection of finitely many half-spaces, namely S = {x ∈

Rn : Ax ≤ b}, where A ∈ Rk×n has no zero rows and b ∈ Rk.
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7. (Face, P86, Section 5.3) A face of a polytope S is defined by the set

{x ∈ S : ∀y ∈ S, aTx ≤ aTy} for a certain a ∈ Rn. Note that by setting

a = 0, we have S itself as a face. By definition, every face of a polytope is

also a polytope.

8. (Facet, P87, Section 5.3) A facet of polytope S is a face of dimension

exactly dim(S)− 1.

9. (Boundary) The boundary of a face S is defined as the set of points x ∈ S

such that for any ϵ > 0, there exists y ∈ aff(S)\S satisfying ∥y−x∥ < ϵ. We

denote the boundary of S as ∂S. The interior of S, denoted as S◦, is defined

as S \ ∂S.

10. (Line and segment) In Rn, a line (segment) is a set of the form {y ∈ Rn :

y = td + b, t ∈ I}, where d ∈ Rn is a nonzero vector, b ∈ Rn, and I = R

(I = [u, v]). It represents a one-dimensional affine space. The vector d is

called the direction of the line.

11. (Parallel lines) Two lines (segments) are said to be parallel if their di-

rections d1 and d2 satisfy d1 = kd2 for some nonzero real number k. The

relation of being parallel is an equivalence class, and two lines are equivalent

if and only if they share a proportional direction. Hence, we can also repre-

sent a line (segment) using its direction vector, which we will use directly in

reference to a line below.

12. (Parallel between lines and polytopes) For an affine space A ⊆ Rn, we say

that a vector d is parallel to A if A contains a line parallel to d. Equivalently,

if A =
{
x ∈ Rn : uT

i x = vi, i ∈ [m]
}

, then d ∥ A if and only if uT
i d = 0 holds
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for each i ∈ [m]. For a vector d and a polytope P ⊆ Rn, we say that d is

parallel to P if d ∥ aff(P ).
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